
LOAN DOCUMENT

a

PHOTOGRAPH THIS SHEET

LEVEL

nntf\-K-öV°\

wpwtiwi mi
KIM

DTK TBAC
UNANNOUNCED
JUSTIFICATION

+

DOCUMENT IDENTIFICATION

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

DISTRIBUTION STATEMENT

O
O

DISTRIBUTION/

AVAILABILITY CODES

DISnUBUnON AVAILABILITY AND/OK SMC3AL

9vA
DATE ACCESSIONED

DISTRIBUTION STAMP

DATE RETURNED

20011101 151

IW
I
T
H

DATE RECEIVED IN DTIC REGISTERED OR CERTIFIED NUMBER

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-FDAC

c
A
R
E

DTK^OA DOCUMENT PROCESSING SHEET

LOAN DOCUMENT

MlvUUilMUMUAVllUUDUMRf
STOCK B EXHAUSTED.

C2 SYSTEMS DEVELOPMENT BRANCH

CECOM CENTER FOR COMMAND, CONTROL AND
COMMUNICATIONS SYSTEMS

RESEARCH AND DEVELOPMENT TECHNICAL REPORT

OPERATIONAL PLANNING, PLAN MONITORING AND
THE PHOENIX ARCHITECTURE

Gerald M. Powell Paul R. Cohen
CECOM Department of Computer

and Information Science
University of Massachusetts

Amherst, MA 01003

OCTOBER 1989

CECOM-TR-01-9
Approved for public release.

Distribution is unlimited.

U.S. ARMY COMMUNICATIONS-ELECTRONICS COMMAND
Fort Monmouth, New Jersey

AQ(L03t-D3L-OWS

NOTICES

Disclaimers

The findings in this report are not to be construed as an
official Department of the Army position, unless so desig-
nated by other authorized documents.

The citation of trade names and names of manufacturers in
this report is not to be construed as official Government
endorsement or approval of commercial products or services
referenced herein.

4. TITLE AND SUBTITLE

OPERATIONAL PLANNING, PLAN MONITORING AND THE PHOENIX
ARCHITECTURE

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of informotion is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing deta sources,
gathering end maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimete or eny other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports. 1215 Jefferson
Davis Highway Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 10704-0188), Washington, OC 20603.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
October 1989

3. REPORT TYPE AND DATES COVERED
Technical Report

6. AUTHOR(S)

Gerald M. Powell, CECOM
Paul R. Cohen, University of Massachusetts

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Communications-Electronics Command (CECOM)
Software Engineering Center (SEC)
ATTN: AMSEL-SE-OP
Fort Monmouth, NJ 07703-5207

9. SPONSORING f MONITORING AGENCY NAME(S) AND ADDRESS(ES)

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

CECOM-TR-01-9

(To DTIC: October 2001)

10. SPONSORING I MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited,

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The principal topic of this report is the dynamic behavior of military organizations
In particular we address issues associated with characterizing the ebb and flow of
battle such as how to assess progress being made by our forces. The report describes
a representation mechanism for monitoring plans as they are executed which supports
communication between plan elements as well as plan modification in light of revi-
sions to objectives and changing battlefield conditions. The overall planning model
presented here, within which the plan-execution monitoring capability is embedded,
is perhaps the first system in the artificial intelligence literature to achieve
real-time planning and monitoring, and it will soon be capable of real-time planning
during execution. The cornerstone of the model is the concept of envelopes which
are data structures designed to measure progress and facilitate communication within
an organization in dynamic environments.

14. SUBJECT TERMS Command and control; planning; operational planning; execution
monitoring; plan monitoring; replanning; envelopes; artificial intelligence;
real time; Phoenix; modeling and simulation; military planning; plan execution
monitoring; battlefield planning; knowledge based systems; expert systems

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

79
16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500
Standard Form 298 (Rev. 2-891
Prescribed by ANSI Std. Z39-18 298-102

USAPPCV1.00

1

Contents

1 Introduction 3

1.1 A Summary of the Sections in this Report 4

2 The Operational Planning Problem 6

2.1 Operational Planning 6

2.2 Beyond Doctrine 13

3 The Relevance of AI Planning and Problem-solving Techniques 15

3.1 Projective Planning 15

3.2 Reactive Planning 16

3.3 Probabilistic Planning 17

3.4 Local Search 18

4 The Fire Problem. 18

5 The PHOENIX Architecture 21

5.1 Implementation of PHOENIX 36

6 Improvements to the PHOENIX Architecture 42

6.1 Envelopes 43

6.2 The Utility of Envelopes 44

6.3 How Envelopes Integrate Projection and Reaction 45

6.4 Agent Envelopes and Plan Envelopes 47

7 Envelopes in Operational Planning 49

7.1 Agent Envelopes and Multi-agent Plan Envelopes 51

'—7

8 Mapping the PHOENIX Architecture, with Envelopes, to the Operational Plan-
ning Problem 55

9 Conclusion 59

1 Introduction

The principle topic of this report is the dynamic behavior of military organizations. What
happens once an engagement begins? How can we characterize the ebb and flow of battle?
How can we characterize the progress of our forces, viewed at any level of granularity, from
platoons all the way up to divisions? What messages need to be passed between echelons to
ensure coherent behavior across spatial and temporal extents?

Although our intention was originally to study the static aspect of the operational planning
problem, in which resources are allocated in anticipation of engagements, it quickly became
apparent that military planners need representations and inference mechanisms to deal with
dynamic situations as they evolve. That is, in addition to constructing plans for various alter-
native scenarios, we need mechanisms to monitor plans as they are executed, to maintain our
aims under widely varying circumstances, and to modify our plans and goals as appropriate.

Until recently, AI planning research emphasized the generation of plans. Little attention
was paid to the processes of executing and monitoring plans once they were developed (Sec. ??).
The locus of intelligence in AI planning techniques was plan-generation, not plan execution,
monitoring, and replanning. The model presented here is perhaps the first system in the AI
literature to achieve real-time planning and monitoring, and it will soon be capable of real-time
replanning during execution. Thus, it became the focus of the research reported here. Although
we don't have protocol data to support the model we develop below, we can justify the effort
of developing the model in four ways:

• The model provides a framework for focusing knowledge acquisition, for interpreting the
behavior of planners as they perform plan monitoring and replanning tasks, and for gen-
erating hypotheses in an effort to identify those aspects of the tasks that are difficult for
human planners. Thus, it provides a starting point for the design and development of
automated aids to monitoring and replanning.

• We need the model because common sense tells us that plans never evolve the way they
are supposed to, so planning mechanisms that lack plan-monitoring/plan-modification
mechanisms are incomplete and of limited utility.

• We need the model because it tells us important things about the nature of communica-
tions between and within echelons.

• The model makes predictions about dynamic behavior in military organizations. Thus,
it should be further developed and tested. Any predictive mechanism can be applied not
only to our own forces, but also to adversarial forces, and is therefore potentially useful.

The cornerstone of the model is the concept of envelopes. Envelopes are data structures
designed to measure progress and facilitate communication within an organization in dynamic

environments. We will report on a planning architecture, called PHOENIX, for dynamic, real-
time planning with envelopes.

Although PHOENIX is designed for real-time control of forest fires, its task is similar in
many ways to that of the operational planner: resources must be allocated to control a threat,
and those allocations must be reinforced and otherwise dynamically adjusted in real time (see
Sec. 8 for more detail), PHOENIX'S environment is also similar in many ways to that of the
operational planner: both are spatio-temporal environments; terrain and weather are important,
but weather, at least, is uncertain; the threat behaves differently in different terrains and ground
covers; there can be multiple threats, distributed in space and time; and the resources at the
planner's disposal have different capabilities. The major differences are that forest fires are not
as complex as the European Theater, and forest fires are not sentient adversaries.

One can read this report in several ways. It is, at minimum, a discussion of the relevance
of an advanced AI architecture to the operational planning problem. We hope it will also be
seen as a partial design for an AI operational planning system. How would such a system be
used? Perhaps the most stringent test, short of actual use in the European Theater, would be
to implement an operational planner's assistant for use in war games at the War College. The
system would be an assistant, rather than an autonomous planner, because the responsibility
for plans must rest with human planners, and because the planner's assistant will itself require
assistance with tasks, such as perception, at which computers are historically poor. One can
imagine applying AI techniques to many aspects of the operational planning problem, but our
assumption in this report is that a planner's assistant is the most challenging problem and also
the one with the biggest payoff.

1.1 A Summary of the Sections in this Report

Several sections comprise this report:

The operational planning problem. (Sec. 2.) We will discuss two aspects of the problem,
which we call static and dynamic, respectively. The static problem involves allocating
resources prior to engagement, whereas the dynamic problem involves monitoring and
managing resources during engagement.

The relevance of AI planning and problem-solving techniques. (Sec. 3.) Here, we
survey the AI Hterature for techniques that pertain to aspects of the operational planning
problem. Specifically, we will discuss the two major classes of planning techniques—
hierarchical and reactive planning—and some recent work that suggests local search (an
operations research technique) may be very useful to both the static and dynamic aspects
of the operational planning problem. The emphasis of this section is on the strengths and
weaknesses of many techniques, since we believe the operational planning problem will
require many such techniques, used to their best advantage.

The fire problem. (Sec. 4.) We will discuss the fire-fighting problem to set the stage both
for the following discussion of the PHOENIX architecture (Sec. 5), and for the comparison
between the fire-fighting problem and the operational planning problem (Sec. 8).

The PHOENIX architecture. (Sec. 5.) PHOENIX is an architecture for controlling simulated
forest fires. We will describe its motivation and design, specifically its mechanism for
integrating reactive and projective planning. We will also illustrate in detail those parts
of PHOENIX that are currently operational.

Improvements in the phoenix architecture. (Sees. 6 and 7.) Recently, we have developed
an idea that ought to streamline the interaction between planners and the agents that
carry out the plans (e.g., between commanders at different levels of the military hierar-
chy). Envelopes are metric spaces in which agents monitor their progress. The idea is to
limit the interactions between planners and their agents to those places where progress is
unexpectedly good or poor, and for the planner to use the envelopes of its agents to project
their progress in the future. Envelopes are not yet implemented in PHOENIX but are so
clearly relevant to the operational planning problem that we will offer several examples.

Mapping the PHOENIX architecture to the operational planning problem. (Sec. 8.)
In this section, we will formalize the intuitions that PHOENIX is a good architecture for
operational planning. We will look critically at the similarities and differences between
the fire fighting and operational planning tasks, and also at the structure of the planners
for accomplishing these tasks.

2 The Operational Planning Problem

This section discusses the operational planning problem as understood in doctrine, and
extends that understanding in two areas: COA generation based on our observations of planning
activities of experienced Corps planners, and plan monitoring and replanning as modelled in
an AI planning domain that appears to share many of the characteristics of the operational
planning problem.

2.1 Operational Planning

A U. S. Army corps headquarters is responsible for the conduct of war at the operational
level. The operational level of war is the link between strategy and tactics, characterized by "the
repositioning or displacement of large units ... to force maximum strength against the enemy's
weakest point thereby gaining strategic advantage." 1 To contrast the operational and tactical
levels of warfare, operational success is gained through establishing positional leverage on the
battlefield, forcing the enemy to change dispositions and plans to meet unexpected threats, and
to cause indecisiveness within the enemy command and control structure2. Tactical success is
gained by massing decisive firepower at the critical point and time on the battlefield3. Opera-
tional planning is a difficult, cognitive and visual task, currently unaided by automated systems.
This section provides a description of operational planning as specified both by doctrine and by
experienced corps planners. It identifies the information requirements of planners, the major
decision elements within a plan, and the doctrinal process planners are taught.

Planning at the corps level is a continuous process. At any time, the commander's planning
staff will be operating in one of two contexts: planning for a new operation as directed by higher
headquarters, or planning operations to react to the changing battlefield situation. In either
context, the staff must project battlefield situations into the future (approximately 72 hours at
the corps level) and plan based on that projection. A corps plan will encompass actions involving
up to 150,000 soldiers and extending for periods longer than a week. With modifications to
the plan (Fragmentary Orders or FRAGORDS) the life of a corps plan could be indefinite. In
spatial dimensions the corps plan will govern operations over a space at least 150 kilometers
wide by 150 kilometers in depth, but this can also vary greatly due to variances in terrain,
expected enemy resistance, and the type of operation the corps is to conduct. Additionally,
the corps plan will address operations directed at an area beyond their forward boundary, the
extent of which is defined by movement times 4.5

1
U. S. Army TRADOC, Airland Battle 2000, August 1982.

2COL E. White, "Deep Battle Operational Concept", Deep Battle Planning Briefing, Ft Leaven-worth, KS,
June 28, 1985.

3COL H. Adams, COL J. Allen, COL R. Herrick, COL V. Letonoffand COL M. Moran, Planning Discussions
held at U. S. Army War College, Carlisle Barracks PA, 30 July 1985.

4HQ, Department of the Army, FM 100-5, Operations, 1982.
5The Area of Influence is the area within 72 hours of the corps FLOT (Forward Line of Own Troops),

Planning commences upon receipt of an operations order or operations plan from the im-
mediately superior headquarters. The conceptual components of this order include a situation
description and a corps mission. The situation description designates terrain over which the
corps is to operate, the forces over which corps has control, and a description of the enemy forces
the corps will operate against. In developing a plan or order the corps commander and staff
will make a number of decisions addressing a set of key plan issues. These decisions will then
focus the remainder of the staff activity in developing the complete plan. Planning terminates
when the commander approves the operations plan or order. An operations order is an order
issued by a commander specifying missions and tasks to be accomplished by his subordinate
units. The order normally specifies a time at which the operation is to commence, and, unless
superseded by a later order, subordinates are to take all necessary action to begin execution
at that time. An operations plan is prepared to be executed at some future time, normally
unspecified. Operations plans are normally prepared in advance for certain contingencies, and
are executed upon order of the commander.

The situation description and mission in some sense correspond to the initial state and goal
state concepts found in many AI planning theories. The decision-making issues correspond less
directly to the operators available in the problem domain. The complexity of the operational
planning problem becomes evident when we characterize the initial and goal state descriptions,
and the relationship of the operators to these initial and goal state descriptions.

Situation Description. Military plans are to be executed in a battlefield situation, and
are intended to change particular aspects of that situation. Battlefield situations are difficult
to understand, however, and describing those factors relevant to the current planning task
involves the continuous effort of many individuals. The complexity of battlefield situations
is best described by examining each of the relevant factors and characterizing what is known
about the factor against what needs to be known.6

Enemy Forces. The enemy force opposing the projected corps operation is a critical
element of the battlefield situation. The corps has extensive intelligence collection resources
available for obtaining information about the enemy, and maintains a database of the enemy
force (enemy order of battle, EOB) at all times. This EOB includes everything known or
suspected about the enemy force, such as units identified, locations, activities, strengths and
command relationships. While the EOB does provide a snapshot description of the enemy
at any time (see sections Situation Analysis and Situation Analysis (SA) Actor for further
description), it does not provide the description of enemy forces required by planners.

The information required by planners describes what the enemy is likely to do (intentions),
and what the enemy can do (capabilities) to react to corps operations. This information must

an imaginary line connecting the most forward positions of corps elements. The corps will conduct fire and
intelligence operations into the Area of Influence. The Area of Interest is the area within 96 hours of the FLOT.
The corps will conduct intelligence operations in the Area of Interest.

eThese factors are derived from the METT acronym found in numerous doctrinal publications (e.g., see HQ,
Department of the Army, FM 71-100, Armored and Mechanized Division Operations, 1979.) which stands for
Mission, Enemy, Terrain, and Troops available.

be derived from the description provided by the EOB. This derivation process is one measure of
the complexity of the enemy forces segment of the situation description. Other measures focus
on the quality of the information contained in the EOB. This information is often inaccurate,
incomplete, redundant and out-of-date.

Terrain. A second critical element of the battlefield situation is the terrain over which
the operation is to be conducted. As with enemy forces, a database of terrain information is
maintained by the corps as a set of terrain factor overlays.7 These overlays provide information
about terrain factors, such as vehicle movement rates, areas which constitute obstacles to
movement, and water obstacle crossing sites (bridges, bridgable sites, and fordable sites, for
example). As with the enemy forces situation, this terrain database does not provide the
description of terrain required by planners. Planners need to know the critical terrain features
(key terrain, avenues of approach, etc.) and what their impact will be on combat operations. In
contrast to the enemy situation, however, the information contained in the database is highly
reliable and provides an excellent basis for developing the required terrain description.

Friendly Forces. Friendly forces provide the third element in the battlefield situation
description. Of the three, the information available for friendly forces most closely resembles the
description required for planning purposes. The friendly forces database contains information
similar to the EOB information on enemy forces. Unlike the enemy forces situation, however,
only a more general form of unit capability is required for planning, and this can be quickly
estimated based on unit type and strength information. Also, the information quality is high,
reducing the other source of complexity.

Mission. The mission, which is the input that initiates the planning problem, is a descrip-
tion of what the corps is to achieve (see Receive Mission, Figure 1). It is usually described
as a task or set of tasks for the corps to accomplish. Additionally, the mission may contain
certain constraining information, such as absolute (secure Objective Charlie no later than), or
relative (secure Objective Bravo, then secure objective Charlie) times, or contingency tasks (be
prepared to counterattack).

The mission given the corps is incomplete in that it describes only a final, or top-level set
of tasks to accomplish. Accomplishment of this final set of tasks may entail accomplishment of
a number of other tasks. The complexity of the mission statement in the operational planning
problem is a result of this incomplete mission description and the resulting necessity to perform
considerable refinement and/or specification of it before devising a plan.

Key Decision Issues. In devising a plan to accomplish a mission the corps planner
must address a set of decision issues. These issues constitute the major plan elements, and
collectively describe the concept of the operation. These issues also reflect the means (plan
elements) a corps commander has available to effect the required changes in the battlefield
situation necessary to accomplish the mission. The relationship between the situation and

These are termed overlays because they consist of symbology written on clear acetate sheets keyed to specific
areas on topographic map sheets. When overlayed on the map they provide condensed information about specific
terrain factors in the area represented on the map.

these plan elements is indirect, in that the elements do not modify the battlefield situation.
Instead, they force a decomposition of the corps planning problem into a set of simpler (e.g.,
division, armored cavalry regiment, corps artillery), planning problems, which are then pursued
independently. Means of controlling the interaction between these subproblems are reflected
in the corps plan's scheme of manuever (section Scheme of Maneuver) and control measures
(section Control Measures) elements. The corps commander and staff retain the function of
composing these subproblem solutions as they evolve during the execution phase of the battle.8

At the corps level, the basic operator set can be classified into three categories: resource al-
location operators, subgoal allocation operators, and, to a lesser degree, control operators.9The
resource allocation operators create the entities and situation description (terrain allocation,
friendly forces available, implicit allocaton of enemy forces, etc.) for the subproblems, the
subgoal allocation operators create the goals, or missions, for the subproblems, and the con-
trol operators impose control over the subproblems as subproblem solutions occur. These plan
operators are embedded in the five plan elements discussed in the remainder of this section.

Scheme of Maneuver. The scheme of maneuver describes and functionally relates the
activities of all subordinate elements of the corps, and describes the relationship of these ac-
tivities to the overall corps mission. The scheme of maneuver is the unifying element of the
corps plan. Doctrinally, all activities of the corps are conducted in support of the scheme of
maneuver10.

Task Organization. The task organization allocates the maneuver resources11 of the corps
to subordinate command and control entities. The task organization describes the subordinate
elements of the corps addressed in the scheme of maneuver in terms of resources they will have
available for the operation. It is interesting to note that the number of subordinate elements is
not fixed, and that the corps planners have a degree of flexibility in establishing the number of
subordinates required.

Mission Allocation. The mission allocation issue refers to the identification of specified
(those specifically stated by higher authority) and implied (those identified by the corps planner
as necessary to accomplish the specified missions) missions, and the assignment of these missions
to the subordinate elements identified in the task organization. Once the specified and implied
missions are identified by the planner, they all become specified missions for the subordinate
elements.

In military terminology, this problem of composing subproblem solutions is referred to as operations control.
Other terms familiar to the planning research community are plan execution, plan monitoring, and plan revision.

Control operators allow the planner to express coordination required between subunits, or subproblems.
Examples of control operators are objectives, sequencing control measures and specific actions.

10T. T. Bean, M. A. Ottenberg and R. K. Mukherjee, Command Control Subordinate System Functional Anal-
ysis: Maneuver Control Functional Segment, Technical Report MTR-83W00022, MITRE Corporation, McLean
VA, April 1983

Maneuver resources are those units which engage the enemy forces in direct combat and seize and occupy
terrain. At the corps level, the maneuver resources available are the armored and infantry divisions, their
subordinate maneuver resources (brigades), and the cavalry regiment.

10

Control Measures. The control measures issue can be viewed as another resource al-
location issue in which terrain features and areas are allocated to the subordinate elements
identified by the task organization. Control measures can also be used to specify a temporal
ordering on the actions of subordinate elements when this is required. At this point in our
research it is not clear to what extent temporal orderings of actions are important to corps
operations. Control measures are normally portrayed in a graphic manner, with an operations
overlay being the standard technique for display.

Support Priorities. Support priorities can be viewed as another mechanism for allocat-
ing resources, the resources in this case being functionally specialized, such as artillery and
engineers. These resources will be allocated to subordinate elements on a priority basis, with
the planner specifying a priority ordering for supported units, which must identify at least the
highest priority, and a functional type of support being provided.

The Problem-Solving Approach. In attempting to solve a particular planning problem,
military practitioners are taught to follow a decision- making process defined by doctrine 12. In
general terms, the process attempts to fully specify information relevant to the current problem,
identify a number of alternative, incompletely specified plans, or solutions, then evaluate these
alternatives and complete the selected plan. Figure 1, The Military Planning Process, which
has been adapted from [8], illustrates the major activities in this process. In Figure 1, the
squared rectangles represent staff actions and the rounded rectangles represent commander's
decisions.

The process begins when a new mission is received. The staff immediately begins analyses of
their respective functional areas13 as they pertain to the unit's new mission. The commander,
with the aid of his principal operations assistants, conducts a mission analysis, which will
produce a complete refinement and statement of the corps mission. Based on this new mission
statement, the staff begins producing and exchanging the information required for developing
plan alternatives. This information is integrated in two concurrent processes, the courses of
action and enemy capabilities processes. The output of this integration effort is a set of distinct
partial plans (courses of action), each of which could serve as the basis for a complete plan.
These candidates are evaluated by the commander and staff, and a single alternative is selected
as the concept of the operation. The details of this evaluation process are outside the scope of
this research. The commander may then amplify this concept with commander's guidance as
he sees fit. This concept of the operation and the commander's guidance will then drive the
remainder of the planning activity as the staff develops the complete plan. In examining this
planning model it is apparent that a number of these processes are information-producers and a
number are decision-producers14. The issues being investigated in this research are the decision
issues, plus those information issues which are too closely intertwined with the decision issues
to isolate as information products. Based on our preliminary domain investigation the key

12HQ, Department of the Army, FM 101-5, Staff Organization and Operations, 1984.
The major staff functional areas at corps headquarters are as follows: Gl, personnel and administration; G2,

intelligence, weather and terrain; G3, operations; and G4, logistics.
Information-producing processes produce, as output, information which is used by other processes. Decision-

producers produce, as output, elements of the plan.

11

decision and information processes that require investigation can be described as the following
set of tasks.

Mission Analysis. The purpose of the mission analysis process is to clarify, understand
and restate15 the mission given the corps in the higher command's operations plan or order.
This process is necessary for multiple reasons. The most important of these is that the higher
planning staff has developed its plan, and corps mission statement, without a detailed analysis of
the characteristics of the battlefield environment relevant to the corps. These characteristics will
influence how the corps can accomplish its given mission, and will probably dictate other tasks
which must be performed. A second reason is that the corps plan to accomplish this mission
must be consistent with the superior's concept of the operation, and this requirement may limit
the flexibility of the corps planning staff in developing their plan. In performing a mission
analysis the commander and staff are attempting to determine three sets of requirements16.
The elements of the first set are those tasks to be performed. This includes not only the
tasks specified in the higher command's order, but also those tasks not specified but which are
essential if the specified tasks are to be accomplished.17 For example, securing an objective
(specified task) may require moving across a large water obstacle such as a river. The corps
commander may feel that securing a water crossing site (implied objective) is essential to
accomplishing this objective, and therefore make this a task to be accomplished. The second
set identifies the purpose (relationship to superior command's mission) of each task assigned the
corps, and is principally used to understand the superior command's concept of the operation
and how the corps operation fits into this concept. The final set identifies constraints on the
corps' actions which the planning staff needs to consider. These constraints may be specified
by the superior command or developed by the corps planners.

These constraints may be temporal (accomplish a task no later than, by a specified time,
etc.), spatial (do not cross international boundaries, do not withdraw beyond a specified line,
etc.) or operational (no air support, maintain unit integrity, etc.). The output of the mission
analysis process is a restated mission, which is a statement of all tasks the corps is to accomplish
and their relationship to the corps' mission. It includes only those tasks the commander feels
are essential to accomplish the mission assigned the corps in the higher operations plan or order.
If multiple tasks have been identified, then any required ordering of these tasks is also identified.
It is important to note that routine tasks, and tasks normally included in the scope of command
are not part of the restated mission18. When complete, the restated mission provides focus for
the remainder of the planning effort.

Terrain Analysis. "Land battle takes place amid natural and man-made variations in
terrain. How best to accomplish the mission is frequently resolved in terms of this terrain." [6]
Included in the terrain and enemy estimates process of Figure 1 is a detailed terrain analysis

15Op. Cit. and U. S. Army War College, Sound Military Decision Making, Study Supplement, Carlisle Barracks
PA, September 1982.

16Op. Cit.

These are referred to as specified and implied tasks. At the conclusion of the mission analysis phase they
will all become specified tasks.

lsOp. Cit.

12

effort which attempts to completely describe the militarily significant aspects of the terrain
over which the corps is to operate. One examination of this process 19 concluded that a typical
analysis for a corps operation would require seventy five map sheets and produce 814 terrain
factor overlays. Clearly, the key decision-makers cannot be concerned with this level of analysis.
The terrain effort described here assumes the products of this detailed terrain analysis as being
an available information product. The intent, then, is to identify those characteristics of the
terrain which are likely to have a decisive influence on the conduct of the operation [9]. This
will allow the planner to identify those application features20, such as avenues of approach and
obstacles, which will impact the operation, and also understand the impact of each feature.

Situation Analysis. Situation analysis is an important element of battlefield planning for
several reasons. First, because they cannot exert control over enemy forces, planners want to
know as much as possible about their disposition and activities. From this information planners
derive estimates on enemy capabilities and intentions and incorporate these beliefs in their
plan. Second, planners want to be informed on the enemy situation because the enemy pursues
objectives deleterious to corps forces and accomplishment of the mission. Third, corps missions
are often targeted at enemy forces. The goal of the situation analysis process is to identify and
evaluate enemy capabilities, and to infer enemy intentions. Capabilities are viewed in terms
of the potential of the enemy to react to friendly forces actions whereas intentions are not
necessarily dependent on friendly forces actions. Enemy intentions are viewed as less reactive
than enemy capabilites. They are deliberate objectives which the enemy seeks to achieve by
some relatively well-developed plan. Doctrinally, it is preferred to focus on enemy capabilities
and to resort to inferring enemy intentions only when capability analyses are insufficient 21.

Friendly Force Analysis. For planning purposes, the friendly force analysis process
(friendly estimate, logistics estimate in Figure 1) is characterized by the presence of great
quantities of hard, reliable data. These data describe the available units with both objective
(type, strength, equipment status, ammunition and fuel status, etc.) and subjective (readi-
ness, morale, training, etc.) attributes. The purpose of the process is to determine relative
capabilities of the resources the planner has available.

Course of Action Generation. The course of action generation process develops alter-
native, incompletely specified plans referred to as courses of action.

Key Decision Issues. The course of action process integrates the information provided
by the staff estimates processes of Figure 1 into a set of distinct alternatives, each of which
will accomplish the mission determined by the mission analysis process. As indicated in Figure

E. Trelinske, Proceedings of the Symposium on Computer Graphics in Support of Tactical Command and
Control, TRADOC Combined Arms Test Activity, Ft. Hood TX, August 1977.

20M. Gronberg, Terrain Issues Study, Technical Report CR-0003, CENTACS, CECOM, Ft. Monmouth, NJ,
May 1985.

D. G. Shapiro, P. S. Marks and J. M. Abram, Battlefield Commanders Assistant, Technical Report TM-
1058-01, Advanced Information and Decision Systems, Mountain View CA, 1985

21U. S. Army War College, Simulated Planning Exercise, Carlisle Barracks PA, 1984.

13

1, the interaction between course of action generation and enemy situation analysis should be
extensive.

Plan Monitoring and Replanning. After the selected course of action is developed into
a complete plan, the plan must be disseminated to subordinates. The corps must continally
assess the battlefield to estimate the impact of the changing situation on the disseminated
plan. Once the plan begins execution, certain actions of the plan as well as other conditions
of the battlefield situation must be monitored to determine if the corps objectives are being
achieved in accordance with the plan. Battlefield events may result in the need for the corps
to replan. These events may be of the type that indicate the plan may fail or of the type
that indicate an unexpected opportunity for success (Note: If the corps has sufficient time, it
develops contingency plans for those battlefield situations it believes may develop and which
could require a significant change in the plan). Battlefield planning thus seems to require a
knowledge of how to identiy conditions that need to be monitored with respect to a plan whether
it is prior to, or during, plan execution. Some of this knowledge may be situation independent
whereas other of it will depend significantly on such factors as the particular area of opeations,
the particular friendly and opposing forces, and the particular mission.

2.2 Beyond Doctrine

Further formulation of the planning problem. Powell and Schmidt analyzed the plan-
ning activities of Corps-level human planners. This study arrived at the following conclusions:

• Corps planners have a significant requirement to further formulate the planning problem
given to them. This further formulation is an interpretive and predictive task directed
at both the initial state (terrain, weather, friendly and enemy forces) and the goal state
(mission and commander's guidance) of the plannning problems they receive.

• These problem formulation activities are interleaved with other planning tasks, specifi-
cally, problem decomposition, plan evaluation, and plan repair.

Monitoring and Replanning: Although we lack empirical data on plan monitoring and
replanning in human planners, we have derived the following characteristics of these aspects of
planning from ST 100-9 [9](The Command Estimate) and FM 101-5 [30] (Staff Organization
and Operations):

Planning is Opportunistic Battlefield events may indicate unanticipated opportunities for
success, which should be exploited for retaining or regaining the initiative (see Appendix
B, [9]).

Planning for Contingencies If the Corps has time, it "continuously develops contingency
plans for new alternatives to current operations." (see Appendix B, [stlOl- 9?]).

14

In addition to the few characterizations of planning that we can derive from the available
literature, we make the following assumptions about human real-time planning in dynamic,
real-time, spatially-distributed, multi-actor environments such as the European Theater:

Planning is Incremental. Execution begins before the plan is fully specified. Many aspects
of a plan, such as the exact rendezvous point of forces, cannot be specified until the plan is
underway. Thus, planning and action will occur simultaneously. A particularly important
criterion is that potential failures in plans must be detected as early as possible, and plan
repairs should be issued before the failure actually occurs.

Planning is a kind of Approximate Processing. Lesser and his colleagues [25] have pro-
posed the idea of approximate processing for real-time systems. The basis of approximate
processing is that there are always several methods to achieve any goal, some of which
are expensive (in terms of time) but give precise results, and others that are cheaper but
less precise. By monitoring and projecting progress, a planner is able to anticipate how
long it has before a plan (or plan-fragment) fails or succeeds. It can use this estimate to
select among planning methods. An example, illustrated in Section 5 (Figs. 13 and 14),
is the granularity of path-planning search: if the planner has relatively little time to find
a path between points, it will use a coarse-grained search to get milestones, and then
perhaps plan the path in more detail while the bulldozer or crew are in transit to the first
milestone.

Planning is Distributed. In organizations, many individuals have responsibility and author-
ity for goals and actions, so planning is distributed and must be coordinated. Sections 6
and 7 illustrate how the envelope mechanism will support distributed planning. En-
velopes enable a central node to distribute tasks to autonomous agents, which maintain
their own envelopes, and only interrupt the central planner when prespecified boundaries
within their envelopes have been crossed (e.g., when an agent's plan is in danger of fail-
ing). Envelopes are very similar to the information passed among distributed planners in
Durfee and Lesser's partial global planning framework [14].

15

3 The Relevance of AI Planning and Problem-solving Tech-
niques

Most research on AI planning is only remotely relevant to the operational planning prob-
lem. This section discusses the reasons for this and suggests new techniques that are more
appropriate22.

3.1 Protective Planning

Early research on planning adopted predicate calculus as a representation language for
planners and viewed planning metaphorically (and sometimes literally) as theorem proving.
The initial state of the world was captured in a set of axioms, the goal state was a theorem, and
the plan was a proof that the goal state could be reached from the initial state. This approach
to planning is found in HACKER [34], GPS [29]), STRIPS [15], INTERPLAN [37], WARPLAN [40],
Waldinger's planner [39], ABSTRIPS [32], NOAH [33] and NONLIN [36].

From our perspective, the most salient characteristic of these planners was their almost com-
plete avoidance of uncertainty. These programs were crafted under the assumptions that they
would have complete, accurate knowledge about the state of the environment, and complete,
accurate knowledge about the immediate outcomes of all actions. Actions were represented
(and indexed) in terms of their immediate outcomes; for example, in the blocks world, one of
the immediate outcomes of the action (take-off x y) is (clear-top y) — removing x from y clears
off the top of y. But although these planners knew the immediate outcomes of actions, they
were required to search combinatorial spaces of extended ramifications. For example, an action
such as (put-on red-block green-block) may achieve an immediate goal, but may later impede
progress toward a goal that requires green-block to have a clear top. A better plan may involve
moving green-block first and then putting red-block on it. Early planners dealt with uncertainty
about the extended outcomes of actions by various forms of search. Some algorithms were
more efficient than others (i.e., required less backtracking). But all assumed that, because the
immediate outcomes of actions are certain, the extended ramifications could be discovered by
projection, that is, by internally simulating the actions in a plan before committing to any
external actions.

Because planners were assumed to know the current state of the environment and the
outcomes of ah actions, and because it was assumed that the environment did not change
except through the actions of the planner, there was really no need to distinguish internal and
external actions. Actions cannot introduce discrepancies between the projected representation
of the world and the actual world.

This section is adapted from "The centrality of autonomous agents in theories of action under uncertainty,"
by Paul Cohen and David Day [6l

16

Clearly, these approaches have little or nothing to do with real-world planning. Operational
planning, in particular, is characterized by considerable uncertainty about the effects of actions.
This has several sources, as we noted in Section 2.

More recently, AI has developed planning methods that do not depend so heavily on these
assumptions. One approach, which modifies the earlier planning algorithms relatively little,
involves replanning when the environment turns out to be different than projected. For example,
Wilkins' SIPE planner was very much like NOAH [sacerdoti75?], but when discrepancies were
detected between the environment and its internal representation, SIPE would efficiently modify
its plan, maintaining as much of its original plan as possible [42]. Related replanning methods
have been developed by [4].

Earlier planners assumed that actions were instantaneous, and that their effects persisted
until they were explicitly negated. However, actions take time, and the states they bring
about may be ephemeral. Temporal logics and temporal planners address these issues (e.g.,
see [27,2,12] for work on temporal logic, and [38,19] for temporal planners). Clearly, these
techniques are important for operational planning. Planners must always be cognizant of the
amount of time it takes to transport troops from one place to another, for instance, or how long
a unit can stay fresh and alert.

Just as actions take time in real physical environments, planning and replanning them-
selves take time. In real-time planning, the agent must allocate a limited resource—time—to
planning, replanning, monitoring the environment, and action. Time usually has costs (e.g.,
in the fire-fighting domain discussed in Sec. 4, forests are consumed while the agent plans.)
The balance between internal and external actions is further complicated by uncertainty about
the environment: to meet time constraints, agents may begin sequences of actions before they
have all the evidence they need; but if they wait, an opportunity may be lost and the evidence
will be of no value. Recent work on real-time planning includes that by Durfee [14], Lesser,
Durfee and Pavlin [25], Hayes-Roth and her colleagues [20,18,31], Korf [24], Dacus [10], Luhrs,
et al. [26], Herman, et al. [23], Daily, et al. [11], Firby and Hanks [17], Hendler and Sanborne
[22] and others.

3.2 Reactive Planning

A radically different approach challenges the distinction between planning and execution,
and thus the distinction between internal and external action. This view holds that, by any
metric, projection in uncertain environments is inefficient: dynamic environments will never be
as they are projected to be, so projection is a waste of resources. Projection involves selecting
actions that are expected to be appropriate at some point in the future; planning without
projection involves selecting actions based on the current, immediate environment, without
exphcitly considering their consequences. Reactive planners do not project, but simply react to
their environments, so the distinction between planning and execution is absent [5,1,3,16].

17

Reactive planning raises questions about the status of goals: planners may appear to be
goal-directed when, in fact, they are simply responding to their environments. One does not
need internal structures called goals to explain apparently intentional behavior. But we believe
that intelligent agents should reason about their goals, so some goal-directed behavior will not
be generated by reactive planning [28,13].

We believe reactive planning is an extreme response to uncertainty in the environment.
We agree that the value of projection depends on the certainty with which we can predict the
outcomes of actions; but since this is variable, and depends on many factors, we do not agree
that planners should completely forego projection. (Others have made similar observations
[21,13,35].)

We will assess the relevance of reactive planning to operational planning in Section 8, after
we have introduced the notion of envelopes (Sec. 6). Suffice it to say that the command
structure of military organizations seems to be set up so that higher levels can view lower levels
as reactive. Orders seem to specify, at some fairly gross level of abstraction, how lower levels
should respond to changes in their environment. This makes them reactive and also, to some
degree, predictable. We will return to this point in Section 8.

3.3 Probabilistic Planning

We can, in fact, project even if we do not know the precise outcomes of actions. Decision
analysis is a form of planning by projection: When actions have uncertain outcomes, and
these lead to further actions, then a combinatorial space of actions and outcomes is quickly
generated. If one knows the probabilities that actions will lead to particular outcomes, and also
the utilities of the outcomes, then one can find the subjective expected utility of actions. For
example, imagine test-1 costs $10 and will accurately say whether or not a patient has disease
A, but says nothing about diseases B and C; and test-2 costs S50 and is diagnostic for disease
B but says nothing about A or C. Which diagnostic action should we take first, test-1 or test-2?
Assuming A, B, and C have equal priors, it is most efficient to do test-1 first. Decision analysis
will resolve the question for the general case of unequal priors.23

But note that two assumptions are implicit in the example: the statement of the problem
implies that the hypotheses A, B, and C are both mutually exclusive and exhaustive. Thus, if
test-1 finds A, we need not do test-2; and if both tests fail to find A and B, then the answer must
be C. Mutual exclusivity is a special case of conditional probability: When we say A and B
are mutually exclusive we mean that the probability of disease B is conditional on the outcome
of test-1 (and equivalently, our belief in A), and vice-versa. Thus, in the general case, to plan
a sequence of tests to find out which disease a patient has, we need to know the conditional
probability of each disease given each combination of outcomes of tests for these diseases. Even
if we assume the diseases are mutually exclusive and exhaustive, and we assume that every test

23We are grateful to Professor Glenn Shafer for this example.

18

either confirms or disconfirms a disease (but does not provide partial support for any disease),
we are still faced with a combinatorial search because there are N! sequences of diagnostic
actions, and because each action can have several possible outcomes.

We are not rejecting decision analysis as a technique for planning under uncertainty, only
noting that its inherent combinatorics must be managed carefully (e.g., Wellman has proposed
some approximate forms of decision analysis [41]). All planning by projection generates com-
binatorial spaces of plans; uncertainty about outcomes simply makes, the problem worse. We
expect that decision analysis can be merged with AI planning techniques (e.g., least com-
mitment and hierarchical planning) to reduce the combinatorics of projection. For example,
hierarchical planning reduces the combinatorics of projection by generating plans at successive
levels of abstraction [7]. Decision analysis might be used to select actions at each level.

In Section 8, we discuss the power of abstraction in managing the combinatorics of projection
in operational planning. The same point holds for decision analysis, which is just a probabilistic
projection: If the actions of military organizations are viewed at a sufficiently gross level, one
can in fact project the progress of engagements to some point in the future.

3.4 Local Search

Operational planning is in many respects a resource allocation problem. This is true for both
the static and dynamic aspects of the problem. In the static case, we need to assign resources
to geographic areas to contain an enemy force; in the dynamic case, we must reason carefully
about our materiel and other physical resources, and also our temporal and computational
resources. We are thus very interested in a class of operations research techniques called local
search methods. The idea of local search is simple: One first generates an approximate solution
to a resource allocation and then, by a series of "swaps" transforms the solution iteratively
into a better one. Expert heuristics can be integrated with local search as follows: swaps are
dictated not by a domain-independent evaluation metric, but by expert knowledge about how
to transform one solution into a better one. This technique seems especially well-suited to the
static phase of operational planning, in which military forces are allocated to geographic areas
in accordance with constraints. We imagine that an algorithm would generate the first solution,
the first allocation of forces, and then expert heuristics would be used to permute this into a
better solution. To date, these techniques have been used for layout problems (e.g., laying out
floor plans subject to numerous, sometimes conflicting constraints). We believe they will also
be useful for the spatial "layout" of forces.

4 The Fire Problem.

For the last eighteen months, one of us has been directing the development of the PHOENIX
planner for controlling forest fires. We have built a large simulation of forest fires and the

19

equipment commonly used to put them out. PHOENIX, which is still incomplete, operates in
this dynamic, real-time world. Its goal is to manage the fire—limit the loss of human life, limit
the damage to forest and buildings, and limit the monetary costs of achieving these goals. This
task closely approximates the problems faced by a forest fire manager, but more importantly,
it.is representative of a class of military command and control problems.

Our simulation consists of a large geographical area ("Explorer National Park") in which
there is a considerable variety of topography and ground cover, as well as roads, lakes, and
streams. Very recently, we have obtained data from the Defense Mapping Agency, so PHOENIX is
now able to plan using all the terrain features that military planners consider important. These
features affect how forest fires burn. Equally important features are wind speed and direction,
both of which can change unpredictably, and the moisture content of the ground cover, which
varies in time and geographically. To fight the fire, the simulation provides bulldozers, crews,
transport vehicles, planes and helicopters. These cut fire line, move firefighters, spray water,
or dump ret ardent.

These fire-fighting agents can be directed either by an automatic planner or else by a hu-
man player of what is essentially a complex, real-time video game. We have already gained
considerable insight into (and respect for) the dynamics of this mini-world by playing against
the simulation—often losing many lives and considerable real estate to a seemingly slow and
containable fire. It is difficult for a planner, human or AI program, to do very well at the game
(i.e., put out the fire with reasonable costs, no loss of life, etc.) because:

• The player's knowledge of the fire is limited to what the agents in the field can "see."
Crews and bulldozers can see only short distances; aircraft can see further. The planner
rarely, if ever, has complete knowledge of the extent or location of the fire.

• The behavior of the fire cannot be accurately predicted because some factors that affect
it, terrain, ground cover and the moisture content of the ground cover, are known only
approximately. Moreover, wind speed and direction can change unpredictably.

• The behavior of the fire-fighting agents cannot be accurately predicted. In particular, the
time required to move to a location or perform some task depends on terrain and ground
cover. Fire-fighting agents also have limited autonomy to run away from a fire, so the
central planner cannot always be sure of their location.

• The simulation is real-time with respect to the fire. While fire-fighting agents move, cut
fine and drop retardent, the fire keeps burning. Most important, any time the planner
devotes to debberation is claimed as real estate by the fire.

The environment with which the planner interacts is independent, dynamic and probabilis-
tic. It is independent because the planner is not the only agent of change, dynamic because
changes take place over time, and probabilistic because the magnitude and temporal extent of
changes to the environment are unpredictable.

20

To plan in this environment an agent needs to know when to project and when to plan
reactively. Projection is desirable to avoid pitfalls, and to increase the efficiency of plans. But
projection itself takes time, and uncertainty precludes avoiding all pitfalls, and efficient plans
are useless if no time remains to execute them; so there will be situations when the timeliness
of reaction will make the difference between success and failure.

We now describe the architecture of the PHOENIX planner, which is under construction for
this task. We defer the discussion of the parallels between this task and military planning until
Section 8.

21

5 The PHOENIX Architecture

To our knowledge, the literature on operational planning, including doctrine and training
texts, contains very little on the problems and processes of plan monitoring and plan revision.
Clearly, these are extremely important aspects of the operational planning task. They are
addressed in courses at the Command and General Staff College, but since there are no formal
models of plan monitoring and revision, both pedagogy and knowledge engineering are impeded.
This section presents one such model—an AI planner for real-time control of forest fires. It
generates plans and monitors them during execution. The model is designed to permit plan
revision, though this aspect has not been implemented yet.

The PHOENIX architecture is designed for real-time, incremental planning with approximate
processing. This means that it begins executing plans before planning is finished, and that it
selects from among problem solving methods those that give the best results in the allowed
time. In the following subsections, we illustrate PHOENIX in operation, giving enough detail to
see roughly how PHOENIX works, and then discuss its architecture.

The following pages illustrate aspects of the PHOENIX. All of the illustrations are taken
directly from the screen of the TI Explorer. It should be noted that these illustrations are
very sparse compared the system we have running on color monitors. We use color to convey
groundcover and elevation information in the firemap, as well as highlighting and temporal
information in the desktop (knowledge engineering) mode. Unfortunately, this information is
lost in the transfer to a black-and-white printer.

22

Figure 1. The forest-fire simulator with a fire in progress (center left). The upper pane in
this display is the map of the forest. The lower panes allow interactive input and show the status
of various system parameters (time of day, current simulation step, etc.). The map is marked
with a distance grid (in kilometers), with the top left corner as the origin. The intersections of
these grid lines are marked with "+" marks. This part of the map shows a populated area near
a lake (lower right) at the intersection of two roads. There are two bulldozers based near one
of the roads (upper center), as well as the fireboss control center, marked by a "B". At this
time, the fire has been spotted and the fireboss is sending the bulldozers to the fire (notice the
status message in bottom right pane).

22A

G^h +

en

23

Figure 2. Two bulldozers arriving at the fire. Notice the spread of the fire and the time
that has elapsed since Figure 1 (simulation time in bottom left pane).

23A

i

+

'A 1 <4 M
H >4 ^

3 ^ X tj tj < ^ t| ^
' q ^ * X X Xi q S ^3 s q Xi Xi tj 3 X

*s 3 X 3 3 3 X
ytj X 5 ^ 3 X

*y t; * n X
SIM jj X

s
4-1

w

<J c \

s. «

c

Q C c
c

^
C ^^-"" c

c <J c
""«: c

c <3 <5

c O « <3
i0

3
cn

I

w

<3~>

O I
in

c c c
c « <3

+
C CO

15 a.
o

T
4-

24

Figure 3. The bulldozers have begun to encircle the fire with fireline. They started digging
at the same point and are surrounding the fire in opposite directions. Notice that the center of
the fire is now burning hotter than the outside.

24A

X
LLl

o r
in

c c «

+

CÜ
w
m

4->

10

ZJ
en

I

il

o

CO

Ivj
o

o
Q.'

4-1

05

-D
Cu

U

D:

o
CU

in

\
CO

inh +
J_l
05

25

Figure 4. This figure illustrates the Desktop mode of the planning system, a knowledge
engineering interface in which the various knowledge representations used in the system can be
graphed, edited, and debugged. These graphs show the cognitive timeline of the fireboss, where
the current plan for fighting the fire is represented as a temporal partial ordering of plan steps.
The graph in Fig. 4a is the top level of the plan. At this level the fireboss is following two
parallel courses of action: the environment is being monitored (for new fires and for changes
that may affect the current plan), and the fire that has been reported is being fought. This
second course of action is done in two successive steps: a plan is chosen and put on the timeline,
and then is executed. The graph in Fig. 4b is an expansion of step that is highlighted in Fig.
4a. This is the active plan step in the top level plan, and is itself a plan called two-bulldozer-
surround-fire. The current step in this lower level plan is highlighted; all preceding steps (to
the left) have been executed. Those steps allocated the two bulldozers and sent them to the
fire. The current action is waiting to notice that the fire has been encircled. The subsequent
steps will tell the bulldozers to stop digging line and return to the base.

Ä

1^ >M
JLCft

\

e

r-^

ft

li
ft-
*£?
=
" ä ä

i
ft
ä •
u u
ft N .

is«
•J Ä Ä

Ö.3 ö X
■^ u w o
I s. 1 t.
u. — L, 'X . «> ° . *- u

' N ft
Sou

' N ft
— o U

c *0 1
•^ -^ o* W — =*..
JL s5 i ■I. 3» .
—> Ä (»1t- *■» ,C *<i CO

58

/

• -.,• .■■•■■••/ . ,\':i?.r-\i?-~:.:-.-:

25A

<.Ä.fc.'*^...'

4) w
O

Cu
IVJ

26

Figure 5. These graphs show the cognitive timeline of one of the bulldozers (viewed at the
same simulation time as the fireboss's timeline graphs). Each bulldozer has the same architec-
ture as the fireboss, with its own planning knowledge and timeline. The differences between
the plan knowledge of the fireboss and the bulldozers is contextual; the bulldozers only know
about plans governing their own activities, whereas the fireboss has the more sophisticated plan
knowledge needed to coordinate multiple agents. This architectural consistency will provide the
ability to do research in distributed planning among cooperating agents, since all agents have
the same cognitive structure (we currently use a centralized model where the fireboss coordi-
nates agents). The top level of the current bulldozer plan in Fig. 5a includes the parallel actions
of surrounding the fire and sending periodic status updates to the fireboss. The highlighted
action expands into the lower level plan steps for surrounding the fire, as we see in Fig. 5b. The
current action in this plan is to receive a message from the fireboss to stop building fireline.
This message will be sent by the next action(s) in the fireboss's cognitive timeline (see Fig. 4b),
the step tell-bulldozer-to-stop-encircling.

"Si
o-cs

Sä*-*:*:-;-

3 — « I
eii ^ ii
' ■- M t<

o ^

u I
3 «

_ u
o —>

-j>
?s

i

r

£ Q> £ 0)
CU C 0) C
Jj H 4J -H ■
(fl I— tfl r- .
j) Q) ~) QJ

CO £ 0 '-> £
| <rH | -r-t -
0) i— ai i— i
£ I £ I

a "0 3) >o m
O i_ H5 L. iT?
•U Ü_ r- U. — '
-* I Cl. I Q.
ül a_> CO 4-> in
CÜ dl rH 111 i-l ■
TJWD U'J O l

•\ ^ ^\ /■* /\

X X X X X X X

0.1 Cu dl CO ÜJ
o o o o o

. ü_ Q- ü_ ü_ ü_ ü_

27

Figure 6. The bulldozers have encircled the fire. Notice the extent of the fire spread and
the amount of simulation time that has elapsed.

4 4 «I 14 <l >4

*ih X X Ü
(J IJ IJ 1. M

3 5 ^ XX XXi <J

«X 5 3 s ^ u 3 xx -xx ; 3 Ü 3 <3 3 X tj Ü $ tJ x Ü Ü ti Xi X\ tj X
M <d 3 tj t3 ^ x 5 tj Xi 3 X\ ^ X

*tj Ü ^ X 3 3 x& 3 ^ X
^ 3 X 3 3 Xi x{ 3 3 X

5 s X Ü 3 X X 3 ; X c c * a X * t X X s Ü «d
O SIS X 3 Ü v

X X
s

M <4

V
27A

0)
in
CD
IX

CO
I

5>
(VI
o
■a

o
u
o

D
Or

I

CO

0J \
CO

inr + +
a
o
ÜJ

5
o
u

tvj

CVJ
o
CO

28

Figure 7. At this point, the fireboss has instructed the bulldozers to return to base (see
the penultimate step in Fig. 4b). This completes all active plans, so its timeline is at the
highlighted termination action.

c

28A

i

r—

w
O

29

Figure 8. The bulldozer is still busy executing its plan to return to base, as illustrated by
these timeline graphs. The plan step to return to base has been added to the top level timeline.
(Though it's not clear, the actions to apprise- planner-of-status and surround-the-fire are no
longer active - they've been completed. This information is color-coded in the color version of
the system). The graph in Fig. 8b expands this action with a plan for returning to base. It
is currently executing the highlighted step to go to the beginning of its return path. Figure
9. The remaining figures show frames for various cognitive, state, and data structures in the
system. They are presented in Desktop mode in the frame editor, where their attributes and
relations can be viewed and modified. It should be noted that all objects in the system are
represented as frames for modularity and portability.

30

Fig. 9 shows the frame representing the plan that was executed in the previous figures.
This frame has information about the type of plan (A-Kind-Of slot), the key for matching a
plan to the context in which it is applicable, the variables used by the plan, and the steps in
the plan. There is also information about how to construct the cognitive timeline for the plan.
This plan resides in the fireboss's Plan Library, which is a collection of frames representing
the plans known to it. "When a new fire is sighted, the fixeboss assesses the conditions (e.g.,
wind speed, direction, terrain type, available resources, etc.) and selects a skeletal plan from its
Plan Library. It then instantiates this plan for the particular situation, adds it to the timeline,
and begins to execute it. This much of the planner has been implemented. Monitoring with
envelopes and plan modification require further research.

tn

O
x
01

W\

1
CM £

•a 1 I
0) L. I-

u a 0)
N N

u
c

o o
2 2

01
1

3
X)

3
X)

T 0) 1 1

0)
c- tu CD

4>J w </) 1 re re a m ü U
XI _G _o _g
o o

c
re
i

(8

1 h- 1-
0) 1- T-
o CO S. i

2 CDcT*-- CM
0)

1
0)

0)

3 t- L.
X 0) CO 01

0) *- Cd 1
1 U re

XI

u 1 1 T3
C L. u u_ o o C

3

OJ

Ü u 1 4-* 1 4-*~ 3
c 0

4-<

c
a u

1
x 03

Ü

1
x: O

l_
E_

c
a
o

1
t_
(1) o

.b «.b re
O Q.U Q.

3
V)

en

re
a

4-1
(/)

1
o

4-"

N
o

"5
X

O

1

0)
1
o
4^

OJ
N
o

"O

0)
1
o *-<
1

N
o

■a

E.
CO
N
o
2

c 1_
a) 1 i_ c 3 L.

01
M

3r^ r^ 3
CM L N N X X 1 CM i JJ

CT) 1 0
T3 3 o o

"OT3
' o
<s-n

1 c
a) re

1
c re O

Cd
u

1

D. "5 u
1
33
XI X!

4-<
re
3

3
XI

4-^ r^ re r-
3 4- r

_re c
u

Q.
i

1

-^T3
C C

1

3
C
re

1

"5i
1 0

re
1

"Hi re 4-i

o •g
(I re QJ --» C

(6

r ÜJ <H J-t C*J u 4-> U w -+-• CO U.I c/> s c a.
« C 1 1 i i i i 1 i i i i i 1 I 1 — i

::. '-'r- — — i— ^— f- - 1—h- lU — -*-' t- '-*— 1— + h- a i ', , 1 11
TI in ,—1 (

0' O a, c -*-J 'i' in :,'; c a» <L!
p U 0 ai P U'l p — P ll C> ZJ

(Ti 1 ~
ui s

i
i/i
|TI

IT. i
U'l
m

'\<
c

i.r
c

■r.

3

4->

0)
w
o
•o

o *
!_ a>
'71 3
1^'—
C iri

Hi ..
u ••

0) 3
CO O

3 i_
J>i 3

■— 0 0)
3 O I

CQ — i— -a
0) o c
o) i io

— -iH S_ I
x: 3 0) o
(Coco
a. o 3 a)

r- o
o o

o

i

5J — ai a.
NC:
u o o c
"O -rH TH (TJ
>— 4-1 XJ r—

•- O O □.
DU)» I

CD 1_ !_ i_
m •rH -rH CÜ

4-j r*- x^-a m
i/j lf|t) 1 1 o
<_ ^' fii -H -a "D "a

—. 1—1 r-H-Hr-
a. ai JJ in -n D
JC iJ 01 t— CÜ CD CÜ
— u •— Q_ —'^ ^^

■ 4J

s
: 4_>

CO

m
> £
i P

«1

LL

CO

0J

CO

a)
^>
o
o
CÜ

10

0-J

CO

nmnnnniBDBsiiEtniTnnii

31

Figure 10. These frames represent the cognitive timeline of the fireboss (see Fig. 4). Initial-
timeline-6 is the top level plan (Fig. 10a), and includes the information needed to set up the
top level timeline. Tl-plan-two-bulldozer-surround-fire-1 (Fig. 10b) represents the expansion
of the plan for two bulldozers to surround the fire. Notice the slots for temporal values and
informational messages from the bulldozers.

31A
«,ä§*

"N 'H''&
7 -o ':- '<*rz
CM V-.

1 h~ ''^.
c I'-i-s.f-- XJ

^itfr re ■■*%%'£. ■^H

CM a. 03 '%-'%t'i-. X
"■siSS; 1

-A " = T- 2 i 7
%■■; i*s% LU

(ft
(ft
O

1 -■ G3 —.
o T- 03 oj ~

>■::■■'■;'!>,;

Q} r- J. re a ^
^ i I— o S

i. «» ?
»V 7 C3 t .£?■?%,'■:

;v^'-? 3 N 1 I- 1 ^~ ^T-T-T- £ D
3 r— 1 CO 1 till 1 <"

%'*?

V?^

1

03
#^

1

3 £7 £7 < i « • .2 a
■

CO

C
3 "j=-£-j=.2 i g o £ o *: J

otursuo i- i " J= '
= re.= ' re.b i A ' n ' °

1- 's 03 1 j- 03-TT <fl g 1ft o i ' 03 | [_ 03 | U , " ! " Q) ^

I 2 1 °2 1 C i .Q I ^ r- <t) (ft i CL
co r^-=i_2-=i_Q3L.,i_, , in (ft K.

'S h 'S ^gllsESSSE 7 7|| 1 ff

.£ — QJ 4-. 3-3 « 3-3 5-9 1 -9 ' QJ E C | O*- — *- Q)

u u-± £_, u -_, ciS «ü-i re-o-S^"5-5 iU-c+;= yiS =

i i !■_; -^cr> i i m c •'''■*-« <->__ s-r i j. =
OJ -^__ i co en ccb ■=; i— i— t— j— i— i— i— i— i— i— i— i Q f°i- ■ri_-f-'i— .„i-

'VV;V

1

3
O _.
E-

-J
(ft
1
L.
Ü

0)
CO
03

tvl
0
-r\

3

N
o

w
■3

n o •S KI CD

■

t

o
i *-4 5

■^fii « u
?*H& ■

c
'*&%%$% u

0
re --«

C-a Zf-}Ji ~i
*l 0

»va?;- i • pm +JCCCOÜ. 03 1 O L. QJ 1 vSJ^ — Q
*1":>

'C
•a
©

5
■H

O CLI

*£:?§
**$*■

— 5 O 3 ■*> 2 3 3 3 =■ Ü 3 ^5 0J3-3 Kl 3 (J 3
13« Q* (CJ Ü* U« 1 « 1 * ' "5 i * i "5 -^ * cr

?-:?$
«s c>£>ai>cu>ai>i/i> ^>S>S>m>^>

(ÜO!_XX(D 03 0J CD CD C
10

Ü «#H W ̂ f_jr_j(_iLüujz: _^x:rxt—i 5 0 ■c. J ■>rg': :;;'^ ?.■ CD
•iH
U_

5
0 IJ-

m

OJ

^i^^^|^j^^^^*|i^^^

^^^B^^^^^8Ü^^^S-i^-Ä^^^^l^^^&^l^_^^ ^'Wß /^^ '«' ,' 7 ■ .; r> ■ . ^.**" ,',r v. ■-■:-*'.■•■ -^. +*-.*' ,- .' ■ ,.-l K CO

KM: ':\ ■'■ UV:'-*'.-- '■■ -<''■* ■'•/■.-':..■ **r ^^V!.-''i'':'V:^>''-'.';*'' '';'".'".".■-/■'. 1

*~$i r- ^'g^^^^^^^^^§^^^^^^^^^^^^p^^^^^^^^^^^
Wk 1

€Wi. CO ^^^^^^^^^^S^P^^^^^^^^^^^^^^^^^^^^^^^s^öS^Ä^

•' 1 ^'•Vv"- ■■■•■"'; ^.:» ;V'>sVÄ'*Sv-V-'-i'": ''■;;-.'--:-'v

lilt*
1 o 03 ~

CM .- MU

II-

CM i 'Tire ■'- '■ "■'i,'c '* :/"""-: ?;i^-^)^^^%-:.4'^:'Ä'. "'
1
(ft
(ft
O
.3

03

3 C C ?
T §~T g EL

O

CO

3)

0
0 • — 03 _5.- 031— *^^^|^Ä^^^,|fe^^^Ä^^^^^^^^^^^^^\^^M^^ Cu *-

EE <f7 = i_

- :

.3

CO
1

3 ' > Cr T-
3 m > 3 I 1
t_ 03 nj t_ ' ■ ■
~ N ?~CD CO

-- > O , > I — 1

0

.•.;.' 03 1 3 T3 ' C c 1 c

cca ? 1-fo co o
LH

••
"53
_£

.5

o

°3_5 -?5iSu C O 03
+>.5 re o— re * .2 « c

™ « 3 7-3 3 3 ,_ « ° 3 £ CO
1
Ü'l

ö
•Mi< *->

■^_u C_5üü£ - c u5 -L
t) more iu Q. re re (« -H> 0) ni v> re . , • * ' • . - * r -4 # * - - *> ij

-a 1 1 c 1 j_ 1 1 u 1 1 1 .■_; ' %'V. :sJf ^ " ■ ' * s . ' 01
Ox

i- '%■■ VI ^hh '=' i— 1— (— 1— n>i— ""-'I- £
TJ U. J '_ Q.I — ^;M':5^^^^%^^'|i;^^:^|^iM:|^^%^^ j-> ^H

c t "n m 11

"3 !■ '-' l' I- ii •<-■ 0J U ■!• -''"^^^■^'^^■'-^v??^

5
lj—

•o Ü ^ U 3 ijj Zi tfl P 03 3 ' >>'^K-..:^'^S^^.^.1TC'4%^ to
o 1 m 1 .r. I ir, 1 ,n -^ ,0 !■'; i ^i"^-^Ä^::fe j^>Ä ä:s:fe ^^^^^^'^^'fw^S^M^^^Wv.l^^^^*^^^^^^ rj

■/.■

<£ u"i > 1/1 > i.n -■: 1/1 -> 1/1 •>
(0 ID 'XI " in' c ^y^5_ik* * v*'- '^ *^"'^ tj^^^^^^^^i^^^S^^^ X rr~ ir^*i 6 _] X -L. .1. X -«

03
O '

CO

".-.;•'.. ,..■ ..'.........•. ■■■..■

...... . . .,.-- ..><.>..-, <-«>.r'V^*-\ifV?*V ,-, '''<;■»;
ä_ PI

32

Figure 11. These frames represent the relationship between a step in a timeline (as in the
previous figure) and the methods used to execute that step. The frame Tl-calculate-bulldozer-
path-to-flre-7 (Fig. 11a) represents the step by the same name from the timeline in Fig. 10b.
This frame is used to place the action step of calculating a path on a timeline, and is A-Kind-
Of the action Act-calculate- bulldozer-path-to-fire. This action is a first order object in our
evolving planning language, and as such is represented by its own frame (Fig. lib). This frame
contains information about this generic action, such as the variables used and the timeline steps
currently using this action frame. It also includes a slot for the execution method(s) associated
with the action. This is one method we will use to experiment with real-time control of agents'
cognitive activities, as we allow each action a range of execution methods (enumerated in this
slot) which vary in their contextual applicability according to such features as time-required,
quality-of- solution, etc. An execution method is represented as another frame (Fig. lie),
which has a pointer to a specific method for performing a given action. It will eventually hold
the criteria used by the filtering mechanism that choses which execution method for an action
is most appropriateunder the current circumstances.

32A

4J

33

Figure 12. This figure illustrates the use of frames to represent all system objects. The
frame in Fig. 12a represents what the fireboss knows about the fire. This frame is part of
the fireboss's state memory, and holds only the fragmentary knowledge gained through re-
ported observations by agents such as watchtowers and bulldozers (as opposed to the complete
knowledge about the fire's characteristics available to the simulator). The frame in Fig. 12b
illustrates a communication channel between agents in the system. It shows an information
message from a bulldozer to the fireboss, including the message, a timestamp, and the method
of communication (walkie- talkie in this case). Message handling is an important function in
the fire- fighting system. Everything the fireboss knows comes from communications with other
agents; it bases its choice of plans and coordination of agents on the resulting picture it con-
structs of the fire. When we begin to look at distributed control in the system, communication
between autonomous agents will become multi- dimensional, as any agent might potentially
communicate with any other (not just the fireboss) in order to coordinate sensory data fusion
and cooperative courses of action. The frames in Fig. 12c and 12d represent the fireboss and
a bulldozer. They are used to store knowledge about these agents and pointers to their state
memories and cognitive structures (plan libraries, timelines, sensory/motor capacities).

< - * ••%$ Z '-■>, ■

^>^^^■^^■^^,^>^:■>^:■^^^^o:^■^^^vÄ■Wvi■;v^:v:^v■^-■'>■^■^■^.:^:.Ä■v■^^>>Ä'^:*x*:

i
QJ

I
T3

<5

i 1—1

0) 0.1 □1 c re
V)

o
c
m

CJ •-J JZ
=

1 =
ü
i

£ « c
O >. o
^ <0 ■~*

5
-*->.u

t_ ■•* u

>:££ $&$im ^:t*^Ä &:::'<%'%£ **?£^V > >%:\?S^ %
/->»

;? <S IT) ^,
Iß ^"* ~-«
CO
CO ftv

CM
1 <D CD

OJ
-r

tfl iTi ro CO
l/> r>- •3-
O * p- T

J3 o OJ OJ *
CJ ^" OJ CO
t- *" • CO CO »*- M LTl CTi OJ

c W0"1 0~i 0 OJ :r

'S* in U"i 0 >, IT) ,- co IJD —. 00
CM «J >- rr. CO OJ PJ C |V. Ml CO 0

1 • T IG L. r»- u . T T T
m 1*1 '•+- —* CO ~.U- 00 - CD ■—■ *-* uD
c "* O ai ■*-•

U_
U 1 u W co
V '- 1. ■*-> <ü i_ u ■*-> Oj -^ i. C 4. 0j 0.'

QJ 3 JZ 3 (XI 3 C 3 C 3 — D 3X3
o -^ « CTl* ■+-' 15 ~" 'D tu 15 cn 15 UV* ■>-> 15

«e C "> T. > Ul > o > ■~ *> ■- > ;=> -a>
QJ

LJ
m
X i—i

ja ö 0
D -

IJ") H ö

.& CM

(/>
O

QJ

c
CM

m

o

OJ

CM

O

._ c
1 o

ai

o
XI

QJ

CO
c
a a

QJ
u
c
CD

-t->
in
c

1
c
CD

(—1

a
A

QJ
M
O

CD
ru
o

in
1

CO "O OJ "O — OJ
1 1— 1 ■— 1 ru

TZI '— ID »— "O O
•rH D T-l 3 -p-i "O

1 n 1 .Q 1 ■—
C I <z \ c ■—
•3CCCICD
•- '_ ■— £_ r- J3
CL D a D a 1
I jj I JJ 1 o

oj ai oj a> oj j
1 ■_ 1 i_ 1 J->
tn 1 in 1 in 1
in c in c in c
o <c o ic o H3
U'— J-J >— Jü <—
QJ Q. 'j.' Q. Qi Q.
1_ I s_ I '_ I

c_l l.

— 2
il"t

> >
c

Lü

QJ
U
C
m I D

c ~

34

co

■5

1

co

OJ

CD

3J

QJ

C'J \

35

Figures 13 and 14. These figures show the search conducted by a modified A* path-planning
algorithm. In Figure 13, the search is at a coarse level of granularity (2 + 11 meters), whereas
in Figure 14 the search is an order of magnitude more refined (2 + 10 meters.) The search in
Figure 13 takes less time, but finds a longer path than the search in Figure 14. This is a simple
example of approximate processing. The idea of approximate processing is that every goal can
be accomplished in several ways, some expensive and precise, and some cheap but less good. In
a dynamic, real-time, unpredictable environment like the fire, one cannot hope to schedule all
problem-solving activities in advance, but instead must schedule and reschedule dynamically.
Approximate processing provides necessary degrees of freedom; for example if the planner is
approaching a deadline, it has the flexibinty to choose a coarser search (Fig. 13) than it would
ideally like.

u
CJ

35A

CO
CO
CO

CTi

Q.
O

«5

re <u
cu >

i—9e <D
I < f-i

U -u c
c
CD

u u
ra
u

E J->
E co
O XI u <

CO

0)

4J
u
«3

10

■c

I

o
CD

CO

CO

I

o
-rH
JJ
u
10

IT)

«3

CO

to

o

u
iC

\~AttiU

in +

CD
■a-

+

a+ + ■
a D a

1

1 ■ ■
i

D a a c D a
■ ■ ■

■ ■

D D a a D D
■ ■ ■ D a D G a D a D a

D a D D 1 a a
+
D a D

D D D □ a a a D

D D D D D

D ■
■

1 a D D a

+

+

in
CO

+ I D D a D G D G + +

Lfi
C'J

35B

•H 0)

Cfl 4J
0)

CJ TJ
>-i (-1

1«

CO
CJ 4-1

•H C
.£ o
o e
« T-i
U B
QJ E

•H O

O 01
4-1 >

CD
0) (—1
c
re c

i

D

Li.

n
•D
0)
i—

u

(0

L0

CD

Q.
0)

CO

ID cu
D> z>
0) w

i-> 4->

u u
fO IC
L— L-
4-1 .*_*
to m
n .□
H3 IO

36

5.1 Implementation of PHOENIX

The Phoenix environment has two major components, a discrete event simulation kernel
(Fig. 15.c) and an agent architecture (Fig. 15.b). From these, it is possible to build organizations
of fire-fighting agents (Fig. 15.a), or, as noted below, any other kinds of agents that operate
in map-like environments. The kernel provides the illusion of parallel, continuous activity on a
serial machine (Fig. 15.c). It supports the definition of spatial worlds such as the forest, and
processes, such as fires, planning, sensors, effectors, and reactions. It provides a low-level task
scheduler that automatically keeps all these processes coordinated. The user never sees the
kernel, and can think of all processes as simultaneous.

Currently, the Phoenix environment simulates forest fires in the Yellowstone National Park,
as discussed in the previous subsection. But the Phoenix discrete event simulation kernel is
generic. It can manage any simulations that involve maps and processes. For example, we
could replace the forest fire environment with an oil-spill environment. We could replace our
map of Yellowstone with oceanographic maps of, say, Prince William Sound. Fire processes
have spatial extent, and spread according to wind speed, direction, fuel type, terrain, and so
on. They could easily be replaced with oil-slick processes, which also have spatial extent, and
spread according to other rules. Similarly, we could replace the definitions of bulldozers and
airplanes with definitions of boats and booms.

Just as one can change the world by replacing maps and processes in the Phoenix discrete
event simulator, so can one change (and thus experiment with) planning methods within the
generic Phoenix agent architecture (Fig. 15.b). The agent architecture assumes that agents
have sensors and effectors, reactions, and a cognitive component, but it doesn't stipulate how
fast they run, how much they know, or how they work. Thus the agent architecture is a
framework in which to design and build agents. It doesn't require these components for any
given agent, but it does facilitate their definition.

There are four components to the architecture of an agent (Fig 15.b). Sensors perceive
the world. Each agent has a set of sensors for such perceptions as fire- location (are any cells
within my radius-of-view on fire?). Effectors perform physical acts such as moving or digging
fireline. Reactions are simple stimulus- response actions, triggered when the agent is required
to act faster than the time-scale of the cognitive component can handle. An example is the
reaction by a bulldozer to stop if it is moving into the fire. The cognitive component performs
mental tasks such as planning, monitoring actions, evaluating perceptions, and communicating
with other agents. It is composed of a number of subcomponents (see below for details). Each
agent has these four components; each component can be endowed with a range of capabilities
from limited (or none) to sophisticated.

The cognitive component of an agent performs tasks such as selecting and instantiating
plans, monitoring, projection, and reasoning about the use of cognitive resources (notably time).
It is composed of five subcomponents. State memory stores known information about the world,
such as sensory reports and event histories. It also has pointers to the maps representing static

Phoenix Planner Figure 15a

Fireboss

communication

wa tch tower-1
1'

bulldozer-1 crew-1

watch to wer-2 bulldozer-2 crew-2 • • •

watchtower-3 bulldozer -3 crew-3

37

Phoenix Testbed Agent Architecture Figure 15b

cognitive component

trigger^-^ sensors dataflow state
memory

plan
library

""progran i program\ /

reactive
component

dataflow/^ ^ timeline
cognitive
scheduler

communication

program ^ effectors ■^ program

other < agents

Phoenix Testbed Discrete Event Simulator Figure 15c

simulation
of the
environment

kernel

tasks (and the
task scheduler)

sensing

effecting

reactions

cognition

maps (annotated
2D representations)

"[features
"I elevation

"1 ground cover

Figure 15. Three levels of the Phoenix Architecture

38

characteristics of the simulation world. The plan library holds plan knowledge about what to
do in various situations in the world. Once chosen from the plan library, a plan is instantiated
on the timeline, a constrained network of cognitive actions - the planner's cognitive agenda.
The cognitive scheduler maintains the timeline, and is responsible for deciding which available
action to execute. Communication with other agents is handled by the cognitive component;
message processing is a cognitive activity, requiring mental effort. Some of these cognitive
subcomponents are discussed in more detail below.

The cognitive timeline is a constrained network representing all of the cognitive activities
that have been selected for future execution by the agent (except the simplest communication
processing). Entries on the timeline are ordered temporally, with deadlines and coordination
points represented explicitly; entries with no temporal constraints can be executed in arbitrary
order. The cognitive scheduler maintains the timeline and controls the order of execution of
timeline entries. Because entries are partially ordered, there are often strategic choices to be
made about which action to execute next.

Timeline entries are either primitive cognitive actions or plans that expand into similar
networks of entries that are added to the timeline. The execution method for a timeline entry
is chosen when that entry is scheduled for execution. The expansion of a plan used as a plan
step is done by the same mechanism - the entry representing the plan has an execution-method
that causes an appropriate plan to be selected and its network of actions inserted into the
timeline after the current action. By delaying the choice of execution-methods, the cognitive
component can reason about its own use of cognitive time as the plan proceeds and choose
execution-methods appropriate to real-time constraints.

Planning knowledge is stored in skeletal form in each agent's plan library. A plan is a
partially ordered set of cognitive activities, where the ordering represents temporal constraints.
Plans are indexed by environmental characteristics which make them applicable. When a plan
is retrieved from the plan library, it is put on the timeline.

All agents in the Phoenix testbed have the same architecture. The generality of the agent
architecture makes it possible to experiment with a number of issues, such as the authority
relationships among agents, and various levels of functional capabilities within agents themselves
. Another reason that the Phoenix agent architecture facilitates the design and construction
of agents is that the Phoenix discrete event simulator is set up to handle agent processes, so
the user need never think about how agent activities are interleaved and coordinated with
other activities in the environment. The discrete event simulator automatically ensures that all
activities get a "fair share" of time. For example, one can define a dozen agents and a scenario
with a dozen fires, and never worry about how time is allocated to agents and fires.

Real time in Phoenix. In any simulation, there are two types of time to manage. One
is cpu time and the other is simulation time. CPU time refers to the length of time that
processes run on a processor. Simulation time refers to the "time of day" in the simulated
environment. The Phoenix discrete event simulator kernel (Fig. 15.c) ensures that simulated
parallel processes all begin or end at roughly the same simulation time, irrespective of the

39

cpu time they consume. For example, imagine it is now 12:00:00 in the simulated world, and
an agent is about to begin planning. After one cpu second, simulation time for the agent is
12:05:00. The agent's adversary, in this case a forest fire, is "owed" five minutes of simulation
time. It may take 7 cpu seconds to calculate the effects of five minutes of fire. Moreover,
simulation time is still 12:05:00, because the agent and the fire are simulated parallel processes.
So after eight cpu seconds (one for the planner and seven for the fire), we have simulated five
minutes of planning and five minutes of fire, and both processes are paused at 12:05:00.

Note that a human observer keeps yet another type of time, which we call the observer's
time. The planning and fire processes that took five minutes in simulation time took only about
eight seconds (the eight cpu seconds plus some overhead) in the observer's time.

The relationship between simulation time and cpu time differs, depending on what kinds of
processes the PHOENIX discrete event simulator kernel is running. Figure 16 illustrates these
relationships.

40

SSSSSSSSSSäSSSSSSSSSSSäSS

mmttkw%m^^
i&ft^g^^

wmmMmimsmm.

sensory-
tasks

effector
tasks

fire
tasks

the
cognitive
task

SCV\VN>-XVX^\VV-V\>\VVV\V,»'J ■.-■■w. iiX-nn O, V. ■■ s. -. -Q. \\ \V V.1

^^^^^msssj

mmy^m^y^^Ammm^
WMmmdfwvMMMm

wmmmmmmm&
I

0.0 0.1 0.5

cpu seconds

1.0 2.0 0.0 2.5 5.0

simulation time minutes

Figure 16. The relationships between cpu time and simulation time. Sensory tasks
can, in principle, take an arbitrary amount of cpu time, but are instantaneous in
simulation time. Effector tasks generally take little cpu time, and take an arbitrary
amount of simulation time. Fire tasks take cpu time proportional to the size of the fire,
and always take exactly five minutes of simulation time. CPU time and simulation
time are strictly proportional for the cognitive task. Currently, one second of cpu time
equals five minutes of simulation time. This is adjusted by the real-time knob.

41

Phoenix supports dozens of simulataneous processes, not just a single agent and a single
fire, but it is easiest to understand what we mean by real time in this simple, two-process
scenario. One process, the agent, is attempting to contain the other process, the fire. The term
"real-time" refers to the relationship between the cpu time of the agent and the simulation time
of the fire, irrespective of the cpu time the fire requires, and independent of the observer's time.
It matters only that forest fires don't move too quickly (in simulation time) for a planner to
decide how to control them (using cpu time). The definition of "real- time" has nothing to do
with how much cpu time is required to calculate the movement of the fires, nor how quick or
slow these processes appear to the observer. (For pragmatic reasons, however, Phoenix runs
fire-fighting scenarios in minutes instead of days.)

More precisely, imagine that these processes, the planner and the fire, each have access
to a clock that measures simulation time. Because these are simulated parallel processes, the
planner and the fire are always allocated the same amount of simulated time. So when both
have run for their allocated times

elapsed-simulation-time(planner) = elapsed-simulation-time(fire)

as measured by the simulation time clock. Although these processes could take arbitrary
amounts of cpu time, it is advantageous to impose a strict relationship between cpu time and
the simulation time of the planner and the fire. Thus,

elapsed-simulation-time(planner) = k * cpu-time(planner)

and, from the previous expression,

elapsed-simulation-time(fire) = k * cpu-time(planner)

The advantage of this proportionality is that we now have a way to exert time pressure
on the planner. The real-time knob is the device that exerts pressure, simply by increasing k.
Clearly, we can change k without changing the amount of cpu time allocated to the planner,
and when this happens, the net effect is to increase the amount of simulation time allocated
to the fire. Because of the strict proportionality between simulation time and cpu time for the
planner, the indirect effect of increasing k is to reduce the amount of simulation time allocated
to the planner, relative to the simulation time allocated to the fire. That is, to increase time
pressure on the planner. Currently k = 300, which means that one second of cpu time for the
planner is matched by five minutes of simulation time for the fire. E we increase k to 600, then
the fire is allowed to burn for 10 minutes for every cpu second of planning time.

We reiterate that although this illustration is based on just two processes, Phoenix can
manage dozens. Moreover, the principles are general: In a discrete event simulation, one

42

process or set of processes P will be "set against" another set F. The real-time problem is
to ensure that P acts quickly enough to manage, or contain, or control F. Thus, P must use
its cpu time efficiently, relative to F's rate of change in simulation time. Furthermore, if P
and F are simulated parallel processes, then elapsed simulation time for P must equal elapsed
simulation time for F. This implies a strict proportionality between cpu time and simulation
time for processes in P, but does not constrain the amount of cpu time required by processes
inF.

6 Improvements to the PHOENIX Architecture

The PHOENIX architecture is intended to integrate multiple planning methods and decide
in real-time which is most appropriate to use. The previous section described one kind of
integration, between reactive and reflective planning. In this section we consider another kind
of integration, specifically integration between agents. (These agents may, of course, adopt
different planning methods.) In the operational planning domain, in particular, we have to
consider integration between agents at different levels of a hierarchical command structure,
as well as integration between semi-independent agents at the same level of a hierarchical
structure. The concept of envelopes described in detail below, provides a mechanism for both
kinds of integration. Agent envelopes are a mechanism to integrate the activities of agents at
different levels of a hierarchical structure, while plan envelopes integrate agents at the same
level of a structure under the jurisdiction of an agent at a higher level.

In the following discussion, we assume a two-level, hierarchical command structure. An
agent at the higher level (call it P for planner) generates a plan and gives it to agents at the lower
level to execute (call them Ai,A2, ■ ■ -An, for agents). In the fire-fighting domain, we expect
P to be a reflective planner and A{ to be reactive planners. We discuss other arrangements
in Section 8. We also assume that Ai is autonomous to some degree, and that P and A{ are
not in continuous communication. Thus, P is uncertain about the exact location of Ai and its
short-term (or tactical) activities, but P knows Ai's longer term (or strategic) aims because P
itself directed Ai to achieve them. Given these assumptions, which seem representative of the
relationship between levels of command in operational planning, envelopes help us to answer
some open questions:

• When should P and Ai communicate, and what should they say to each other?

• What information does P need to provide A,- besides goals?

• How can P integrate the activities of subordinate agents Ai and Ajl

43

6.1 Envelopes

Plan monitoring in PHOENIX is accomplished with dynamic data structures called envelopes,
which appear to have much in common with Standard Operating Procedures at some echelons
of the Army Command and Control hierarchy (FM71-2, FM71-3). However, the similarity of
these structures, envelopes and SOPs at Corps level, is uncertain. Nonetheless, it is interesting
that these structures have been independently developed in the Army Command and Control
hierarchy and the PHOENIX system, and we take it as evidence of the basic similarities between
their operating environments.

An agent moves through a multidimensional space to achieve its goals. It moves through
time and over physical distances, through areas with different physical characteristics, and
through a space of information, which varies in quality and quantity. We call this space the
agent's environment. The agent also moves through one or more spaces bounded by failure or
other important events. These spaces are called envelopes. The concept is easier to illustrate
than it is to define. Imagine you have one hour to reach a point five miles away, and your
maximum speed is 5 miles per hour. If you are late, by even a moment, you fail. Clearly, to
achieve your goal you must travel at unabated maximum speed for the entire distance. In this
case, you maintain your envelope as long as your speed is 5mph, and you lose or violate your
envelope if it drops below 5mph.

Consider another, less stressful example: You have one hour to travel five miles, as before,
but your maximum speed is lOmph. You start slowly: your average speed is just 3mph. After
40 minutes you have travelled just two miles, and you have just 20 minutes to travel the other
three. This is possible: If you travel at maximum speed (lOmph), you will achieve your goal
with about a minute to spare. On the other hand, if you continue to travel 3mph for another
171 seconds, you will fail—you will not be able to cover the prescribed five miles in one hour.
In this example, you begin well within your envelope, but because your average speed is less
than 5mph, you find yourself moving toward it. The rate at which you approach your envelope
depends on your average speed: If it is 3mph, then it will take 42 minutes and 51 seconds to
violate the envelope; if your average speed is only 2mph, then it will take just 37.5 minutes to
violate your envelope. In contrast, if your average speed is greater than 5mph, then you will
move away from your envelope. Figure 17 shows the progress of an agent that moves faster than
5mph until time 2, then slows down to less than 5mph. The shaded area shows the distance
to the agent's envelope. Shortly after time 4, the agent achieves its goal with a little time to
spare, that is, within its envelope.

Let us consider one more example before discussing the utility of envelopes in planning.
Figure 18 shows a planner violate and then regain its envelope. Clearly, this is not a failure
envelope of the kind we discussed above, because by definition a failure envelope (and thus one's
goal) cannot be regained, even by maximum effort. The envelope in Figure 18 might be called
a warning envelope. It represents a situation that is recoverable, but only by extraordinary
action. Typically, there is just one failure envelope but many possible warning envelopes. To
continue the previous example, you would violate a warning envelope if your average speed

44

current position

time 1

time 2

time 4

time 3

distance already travelled distance still to travel

Figure 17: Planner approaching its failure envelope.

drops below 5mph, because this is the speed you must maintain to achieve your goal. Violating
this envelope says "You can still achieve your goal, but only by doing better than you have up
to this point."

6.2 The Utility of Envelopes.

The characteristics of envelopes that make them salient for planning in real-time, dynamic,
uncertain domains are these:

• A planner can represent the progress of its plan by transitions within the plan's envelope.
In Figure 17, the plan is "going smoothly," building up "slack" until time 2, at which
point progress slows, and the slack gets used up. Progress, failures and potential failures
are clearly seen from one's position with respect to envelopes, whereas this information
is not apparent from one's position in the environment.

• Just as a planner can project how its actions will propel it through its environment, so it
can project how these actions will move it with respect to its envelope. For example, in
Figure 17 the planner can project, at time 1, how far ahead of schedule it will achieve its
goal, given the assumption that the rate at which it is moving in the environment remains
constant, and thus the rate at which it moves away from its envelope remains constant.
Figure 19 shows how this might work with a different kind of envelope. At the top of the

45

current position

time 1

time 2

time 4

ahead of schedule"

envelope violated

time 3
"behind schedule"

envelope regained

 —*"
distance already travelled distance still to travel

Figure 18: Planner approaching, violating, then regaining its warning envelope.

Figure, we see the progress of two bulldozers in containing a fire. One line in the graph
below shows an envelope representing desired progress—the planned proportion of the fire
that bulldozers have contained. The other line shows the proportion actually contained.
Initially, the bulldozers are outside the envelope of the plan, because the proportion of
area they contain is less than planned. However, the rate at which they are increasing
this proportion is higher than planned, so we can project that they will eventually regain
their envelope, and even when this will occur.

6.3 How Envelopes Integrate Projection and Reaction.

Here is how we propose envelopes should integrate these two styles of planning, and specifi-
cally how they integrate agents at different levels of a command hierarchy: A projective planner
P formulates a goal and corresponding envelope by reflective planning, and gives them to a
reactive planner A{ with the following instructions: "Here is the goal I want you to achieve.
I don't care how you do it, and I don't want to hear from you unless you achieve the goal or
violate the envelope." A{ then works independently, not monitored by P. If A{ is a bulldozer, it
figures out where to go, how to avoid obstacles, and how to keep clear of the fire, until its goal
is achieved or its envelope violated. Meanwhile, P is free to think about other agents, other
goals, or to replan if necessary. Imagine that P gave A{ a warning envelope, and eventually Ai
reports that it is violated. P can now look at A.'s progress within its envelope. By projection

46

o<0
percent contained

envelope rate of increase
of containment

actual rate of increase
of containment

envelope regained
outside the envelope inside the envelope

time

Figure 19: Planner begins outside the plan envelope, then regains it and continues to improve
with respect to it.

47

P can see how late Ai will be in achieving its goal. How far is A{ from its goal? If it is nearby,
the delay might be acceptable. But if Ai still has a long way to go, then it will violate its failure
envelope relatively soon. This tells P that it should start formulating an alternative goal for
Ai, and approximately when it should redirect Ai, assuming progress doesn't improve.

Envelopes grant agents a kind of autonomy, and grant planners the opportunity to ignore
their agents until envelopes are violated. Once a planner directs an agent to achieve a goal, the
agent can do what it likes as long until it violates an envelope, and the planner needn't monitor
each of its agents actions (or each variation in the environment) unless an envelope is violated.
Envelopes allow planners to use their computational resources efficiently—essential in real-time
tasks.

6.4 Agent Envelopes and Plan Envelopes.

We distinguish between the envelopes of individual reactive agents and the envelopes of
plans, which involve multiple agents. In Figure 19, for example, we show an envelope for a
plan to contain a fire. The plan involves two bulldozers moving down the flanks of a fire and
"pinching off" the front. Each bulldozer is a reactive agent with a goal and an envelope, but in
addition, the entire plan has an envelope that represents the proportion of the fire the planner
intended to be contained over time. One can imagine an individual bulldozer violating its
envelope (e.g., cutting much less fire line than expected) but the plan as a whole staying within
its envelope because the other bulldozer works more quickly.

One interesting research question is, how are plan envelopes generated? Is there a way to
merge the envelopes of individual agents to get a joint envelope that represents their mutual
progress? We believe it can be done with constraint satisfaction techniques, though we don't
know how to do it yet.

Joint envelopes are needed to represent the effects of dynamic changes in the environment.
Imagine that a planner has projected the progress of the fire assuming that the wind speed will
remain constant, and it gives a bulldozer a destination and an envelope based on this projection.
The bulldozer starts work and is well within its envelope when, unexpectedly, the wind speed
increases. Now, if the bulldozer remains in its original envelope it might get burned, because
the fire is moving more quickly than anticipated. The problem is that from the bulldozer's
perspective, it is doing fine. It is within its envelope, and it doesn't know that this envelope is
obsolete. Indeed, how would the planner itself realize this? One answer is ugly, the other elegant.
The ugly answer is that the planner maintains dependencies between parameters and envelopes,
so whenever a parameter changes the planner must update all the relevant envelopes. This is
ugly because it isn't parsimonious and also because the planner must attend to all changes in
the environment to see whether they have significant consequences. What we need is a way
for the planner to ignore changes that are not significant. Envelopes define significance: The
elegant solution is for the planner to construct a joint envelope for the bulldozer and the wind
speed, so that if the bulldozer slows down, or the wind speed increases, or both, then the

48

bulldozer moves toward its envelope. If the wind speed continues to be high, the bulldozer will
continue toward its envelope. If the wind speed drops, the bulldozer will move away from its
envelope. Only when the bulldozer violates its envelope, due to continued high wind, or slow
progress, or both, need the planner be notified. This means that the planner can ignore almost
all changes in the environment, attending only to those changes that actually violate envelopes.

49

7 Envelopes in Operational Planning

In this section, we develop two examples of envelopes in operational planning and monitor-
ing.

Any instruction, including those inside envelopes, can have an associated envelope. Thus,
envelopes can be nested. Here's an example of an envelope associated with the instruction to
defend an area:

Measure of progress: The total area under your control as a function of time (e.g., measured
in hectares, at one hour intervals)

Thresholds:

Warning 1: Progress (change in hectares controlled over time) is negative (first deriva-
tive).

Warning 1 Instructions: If progress has been negative for two consecutive time pe-
riods, then project how long (in hours) it will be before Warning 3 or Warning 4
(whichever comes first), given the current progress, and let me know.24

Warning 2: Negative progress is accelerating (second derivative).

Warning 2 Instructions: Project how long (in hours) it will be before Warning 3 or
4 (whichever come first), given the current rate of change of progress, and let me
know.

Warning 3: The rate at which you are loosing territory is N hectares/hour (first
derivative = N hectares/hour).

Warning 3 Instructions: Let me know immediately.

Warning 4: If you continue at the current rate, you will loose something important
(e.g., M hectares, or a particular bridge) in T minutes.

Warning 4 Instructions: Let me know immediately. Consolidate your resources to
increase the amount of time you can hold the bridge, even if it requires giving up
something else. Construct your own envelope for this.

Failure 1: You will not be able to maintain an area, or keep a bridge, or whatever; and
you expect the area or object to fall in T minutes.

Failure 1 Instructions: Let me know immediately. Extricate yourself as quickly as
possible.25

We wait for two consecutive time periods because we don't want to overreact to ebb and flow; we want to
be sure that progress is really negative. But note that if the rate of change of negative progress is increasing,
we don't wait, because we couldn't know the rate of change was increasing without waiting at least three time
periods.

"'The idea is that once it becomes clear that an agent will fail, there's no point devoting any more resources
to trying to achieve success.

50

Failure 2: You have just lost M hectares, or a bridge, or whatever.

Failure 2: Let me know immediately.

Warning 5: Progress is positive.

Warning 5 Instructions: If positive progress continues for two time periods, then let
me know immediately, and continue doing what you are doing within the following
envelope:

Measure of progress: The total area under your control as a function of time
(i.e., the same measure of progress as we have for the superordinate envelope).

Thresholds:

Warning 5.1: The rate at which you are gaining territory is increasing.

Warning 5.1 Instructions: Let me know immediately.

Warning 5.2: The rate at which you are gaining territory is M hectares/hour.

Warning 5.2 Instructions: Let me know immediately.26

Warning 5.3: You now control P hectares.

Warning 5.3 Instructions: Hold that area but don't extend yourself any
further. Let me know immediately.

Warning 6: Positive progress is accelerating.

This is about the simplest envelope one can construct. It involves a single agent, a single
instruction—to defend an area—and a single measure of progress. We can easily make the
envelope more complex by increasing the number of agents, instructions, and measures of
progress. We will return to this point in a moment, but first we'll point out some of the salient
characteristics of envelopes:

Envelopes are a medium of communication. It appears that communication
bandwidths in battle are low, so messages have to be concise. An envelope is a
message from a superordinate agent to a subordinate one, and it specifies precisely
what messages the subordinate agent should send back to the superordinate, and
under what conditions.

Envelopes specify how to characterize the dynamic behavior of an agent.
Envelopes say which of the many possible measures of progress are germane, and
so characterize dynamic behavior "in a nutshell." This is important because entire
envelopes may be communicated when a force is transferred from one command to
another, or when a commander needs to be briefed on the progress in an area. The

The point is that we don't want a force to overextend itself, so even if it is gaining territory we aren't
necessarily happy; we need to be warned if it is increasing the rate at which it is gaining territory, or if it is
gaining territory at a particular rate that is too fast.

51

analogy here is to a patient's chart. A physician halfway around the world can get
a pretty good picture of a patient by relating the progress of a dozen or more vital
signs. Note, however, that neither a physician nor a commander can get a good
picture if they are told only what is currently happening. They need to know the
history—how the situation has evolved. Since envelopes keep track of progress, they
are a good medium for summarizing this information.

Envelopes as characterized above are pretty simple. I will now consider some more elaborate
examples that extend the concept.

7.1 Agent Envelopes and Multi-agent Plan Envelopes

As we pointed out in Section 6, envelopes often measure the progress of multiple interacting
agents. The interaction can be cooperative or competitive; forces can support or attack each
other. We consider these cases in turn.

Dynamic Defense. Imagine the situation in which two forces are falling back toward a river.
The exact orders are, perhaps, to hold the sector that includes the river and counterattack. By
mechanisms like those described in Powell and Schmidt's paper, these orders are elaborated
and operationalized to something like this:

Maintain a spatial relationship between the two forces such that neither can be
isolated by enemy forces; maintain a division in reserve (to counterattack); be in a
particular configuration to cross the river.

(Indeed, it is easy to see that these require still more operationalization, but I'll leave it at
that.)

Four envelopes seem important here. One measures the progress of both forces holding the
sector. It looks like the envelope above, except that it requires information from both forces.
The second envelope measures the spatial relationship between the two forces. The third is very
similar: it measures whether the forces are making progress toward rearranging themselves into
the configuration they require to cross the river. The fourth envelope measures the number of
troops committed to battle, and is violated if any members of the last division are committed.

It isn't difficult to write functions for these envelopes; each measures something that is
pretty straightforward and easy to assess. But there are questions about who constructs these
envelopes and who supplies the information for them. Consider the progress of forces holding a
sector. Should one of the two forces maintain this envelope or should it be done at the command
post? In the first case, one of the forces must tell the other one how it is doing; in the second,

52

each force must tell the command post how it is doing. The same point holds for the next
envelope: To determine whether two forces are in the right spatial relationship over time, they
must either communicate amongst themselves, or with their common command post.

Which should it be? Should envelopes for subordinates be maintained by the subordinates
themselves, or by the superordinate? The answer depends on several factors, which we will
discuss in detail following the next example.

Envelopment We now consider a case of competitive interaction between forces, specifically,
competition with enemy forces and cooperation among one's own forces. The example is a
familiar tactic which consists of a purposeful delay used to shape a penetration that sets up the
conditions for a double envelopment. In this paper we will refer to this tactic as an envelopment.
One's own forces fall back in a parabolic line, drawing the enemy forces into a pocket, where they
are surrounded. Imagine an envelopment is underway, and we are monitoring its development
to see whether it is working the way we want. What needs to be monitored? The following is
a partial list:

• Are our own forces forming a parabolic "pocket" as they fall back?

• Are our own forces distributed in the pocket as we wish?

• Are the enemy forces moving into the pocket as we wish? Or are they moving too
far in, and threatening to break through? Are they failing to enter the pocket, not
engaging us, supping away? Are they holding back for some other reason, perhaps to
await reinforcements? Are they concentrating on the flank of the pocket, to envelope our
flank and mount a counterattack?

• Is our envelopment proceeding as required by our more global strategy?

• Does the enemy have reinforcements within range, or artillery in range, to overwhelm us
in the envelopment area?

All these things can be monitored with envelopes. Before we describe how to do it, we need
to characterize the envelopment tactic more abstractly and precisely, as shown in Figure 20.

The first pane in Figure 20 shows an envelopment in progress, with own forces forming a
parabola, roughly symmetric around centerline c. The point d is a coordination point at which
1) the center of gravity of the enemy forces (cog) and 2) the onset of the envelopment must
intersect in time. In other words, for the envelopment to be successful, cog must be at d, and
the flanks begin to close, simultaneously. If the flanks begin to close too late, or cog isn't at d
when they begin, the envelopment may fail. In practice, d is a real point on the battlefield, but
it is unknown until shortly before the envelopment begins. This is a pretty common occurrence
in real-time planning, where we often plan to achieve states that satisfy particular predicates,
without knowing exactly which states they are. In this case, we want cog to be at a place that
satisfies at least these predicates:

53

• cog is on the centerline c, or is not "too far" from it, where too far is defined in terms of
the distribution of own forces in the pocket, and the exact shape of the pocket.

• cog is too far into the pocket to escape once the flanks begin to close (assuming that the
flanks close without interruption, at the expected rate).

• cog is not so far into the pocket that the forces at the flanks risk firing on own forces at
the rear of the pocket.

These, then, are some of the components of what we mean by "progress" in an envelopment.
They partly define an envelope, which we might call the relative-position-envelope, and
which measures whether the enemy forces are "moving into position," relative to ours, for us
to execute the envelopment successfully. With some additional machinery, described below, we
can monitor progress on the three measures above to see how the envelopment is developing.
Without knowing exactly where the enemy forces will be when the envelopment begins (d), we
can nevertheless ask whether they are moving toward such a point or away from it.

To do this, we have to define a few more measures to operationalize the three just described.
Consider the first one: cog is on the centerline c, or is not "too far" from it, where too far is
defined in terms of the distribution of own forces in the pocket, and the exact shape of the
pocket. One easy operationalization of this involves plotting the trajectory of cog relative to
the trajectory of the focus of the parabola formed by our own forces, abbreviated /. This is
shown in the center pane of Figure 20. In part (b), the distance between / and cog is decreasing
over time, and in part (c) it is increasing. Clearly, in the former, the enemy forces are moving
into a position advantageous to us, and in the latter they are not. We could easily construct
more accurate measures, but this simple one—the first derivative of the distance between /
and cog—would probably suffice. For later reference, we'll call this measure the degree of
convergence and abbreviate it doc.

Now consider the other criteria for progress in the relative-position-envelope: cog must
be far enough inside the pocket to prevent escape, and not so far that the flanks fire on their
own forces at the back of the pocket. The former measure depends on the cog's feasible rate of
movement. Fast enemy forces must be deeper in the pocket than slow forces. Once again, we
can define a measure to determine whether we are moving towards a successful envelopment or
away from one. This measure should probably include more parameters than the last one:

h - the distance between the endpoints of the flanks on the line denoted I in Figure 20

v0wn ~ the maximum velocity of own forces (specifically, those on the flanks)

&l,cog ~ the distance between cog and the nearest point on line /

vcog - the maximum velocity of cog (more specifically, the maximum velocity out of the pocket.)

53A

Own forces fall back in parabolic line, as center of gravity (cog)
of opposing forces moves toward point d, at which point the
flanks of the parabola will begin to close. Points cog and d
change dynamically. The pinch out can be expected to succeed
if the flanks begin to close when cog = d.

Relative to the configuration in (a), the progress of
cog toward the focus of the parabola, f, is increasing
in (b) and decreasing in (c)

'C°9 H Acoflf^

(•^)

Components of a more complex
envelope.

l,cog

f,cog

L1

— distance to travel
before cog "escapes"
the pinch out

-- distance to travel
before the pinch out
can begin with high
probability of success

-- distance the flanks
have to close

line I

54

With these parameters, we can define a measure to operationalize "far enough into the
pocket that they can't escape." Clearly, this measure depends on the rate at which we can
close the pocket, determined by Z2 and vown, and the ability of the enemy to retreat out of
the pocket, determined by Az>COff and vcog. As before, we can make this measure arbitrarily
complicated by adding more and more parameters, but these will probably suffice.

Lastly, we consider the criterion that we shouldn't fire on our own forces. This is a simple
measure that depends on the angle of the parabola and the position of cog within it. Specifically,
we are concerned with the position of cog on the axis c. Let's define a measure called depthc

as follows: depthc = AitCog/AftCog (see the third pane of Fig. 20). Thus, if depthc > 1, cog is
"more than halfway" into the pocket, and, conversely, if depthc < 1 then cog is relatively near
the exit of the pocket. Clearly, we want depthc to be large enough that cog can't escape, but
small enough that we don't fire on our own forces.

Two points about this analysis must be stressed. First, all these measures are dynamic,
meaning that their values typically change over time. Consider degree of convergence, the first
measure we described. If doc is negative it means that the distance between / and cog is
decreasing, and cog is moving into the pocket. If doc > 0 it means cog is moving away from
/, and perhaps out of the pocket, doc itself can be constant, but is more likely to be dynamic,
given that cog and / are simultaneously changing (because both onemy and own forces are
moving).

Second, the conditions for a tactic, such as an envelopment, are typically specified by sev-
eral-measures like doc or depthc, not just one. For example, the relative-position-envelope
involves doc and depthc, which tells us both whether the enemy can escape, and whether we
risk firing on our own forces. There is therefore a probable success envelope of any plan, such as
an envelopment, in which it is likely to succeed (in fact, there are numerous probable success
envelopes for a given plan, corresponding not only to the conditions under which success is prob-
able, but also to different probability levels). The probable success envelope is a subspace of the
space defined by the parameters described earlier: doc, depthc, cog, f, llt Vown, AlfCog, AftCog, vcog

and the angle of the parabola (approximated by Zj and the length of c). It is up to the plan-
ner to specify the envelope for a plan. Because it is difficult to specify a complete function
relating all these parameters and measures, we would expect the envelope to be specified in
tabular form [8], perhaps in a set of rules, based on subsets of the parameters and measures.
For example, the planner may stipulate that the envelopment is likely to succeed only when
these conjunctive conditions hold:

• doc < 0 (the enemy is moving into the pocket)

• li > 2* length(c) (flanks are unlikely to fire on center)

• Vown > vcog (own forces can outrun enemy)

00

.6 < depthc < 1.0 (cog is at least partway into the pocket and at most halfway in.)

In fact, the planner can stipulate numerous rules of this kind for when the envelopment
is likely to succed. Each defines an probable success envelope in which the envelopment is
believed, to some degree, likely to succeed.

As we noted, all these parameters and measures are dynamic, which means they change value
over time. Moreover, the planner is likely to start out outside its probable success envelope; for
example, the parabolic shape of our own forces must evolve before the envelopment is possible,
and until that time, the plan is not within a probable success envelope. These observations
have two consequences. First, it is difficult to predict exactly when the planner will enter a
probable success envelope. Second, the planner may never enter a probable success envelope.
For example, our own forces may fall back, as desired, and cog of the opposing forces may fall
into the pocket, as desired, but the cog may always be too deep in the pocket for us to risk
the envelopment. At some point, we may have to declare the envelopment a failure and try
something else.

Note that probable success envelopes don't help here: they tell us only when success is
likely, they don't tell us when failure occurs. Probable success and failure are not exhaustive
alternatives; a plan can be outside a probable success envelope indefinitely, and may still even-
tually enter the envelope and succeed. But it is this characteristic of probable success envelopes
that really requires failure envelopes. Clearly, our planner cannot go through life saying "Let's
give it just a little longer, and perhaps conditions will change for the better." At some point,
it has to realize that it is too late for conditions to change, and the plan has failed. Here's a
simple example from the envelopment plan. Imagine, as described earlier, that own forces start
to form a parabolic pocket, but cog of the opposing forces stays very close to the rear of the
pocket. The longer this continues, the deeper the pocket, and the greater the danger of the
flanks firing on own forces, and being unable to reinforce the rear of the pocket in case of a
breakout attempt. Equipped only with probable success envelopes, the pocket may continue to
deepen, in the hope that some parameters might take on values that would allow the plan to
enter a probable success envelope. Failure envelopes are needed to say, essentially, the situation
is not going to get better, so we'd better stop it right now.

8 Mapping the PHOENIX Architecture, with Envelopes, to the
Operational Planning Problem

The purpose of this section is to discuss consider in detail the claim that the PHOENIX
architecture is a good first attempt at an architecture for operational planning. We have
structured the section as a series of questions and their answers. We want to stress that the
claims in this section are preliminary.

56

Q: Are the fire and OP environments so different that PHOENIX is irrelevant?

A: Obviously we don't think so, but there are differences. In military domains, one must deal
with a sentient adversary; whereas one's adversary in fire-fighting is unpredictable, dangerous,
and dynamic, but hardly malicious. The similarities between the domains, however, are striking:

• Resources are allocated to control threats

• There are multiple threats and multiple resources

• This process is ongoing and dynamic

• There is considerable uncertainty about the threats and, to a lesser extent, about one's
own resources

• All planning takes place in real time

• The environment is spatial and involves moving resources from one place to another,
which takes time and communication

• Resources have different capabilities and are best used for different purposes

• Weather, terrain, and other environmental factors have a profound influence on the prob-
ability of success

Although the current fire fighting environment is small compared with the European theater,
we think it unlikely that this limits the applicability of PHOENIX to operational planning.

Q: Is the structure of the planners too different?

A: The answer must account for several things:

• PHOENIX uses just two "levels of command," the central planner and its agents, whereas
the military has many levels of command. Will the communication mechanisms for
PHOENIX work for multi-level hierarchies? We believe the envelope idea can be extended
to multiple levels.

• Communication among agents at a single level of the hierarchy. The idea of a plan
envelope is that an agent at one level of a command hierarchy can construct a joint
envelope for multiple agents under its control (this envelope can include environmental
conditions and the actions of adversaries). Plan envelopes give us the data structures we
need to manage multiple agents, but they do not address the possibility that these agents
can communicate cooperatively among themselves to form a plan. They assume instead
that the plan has been "handed down" from a higher level. This may be the correct
assumption for operational planning. In any case, one project in our lab is to develop a
truly distributed planner for the fire problem, based on envelopes.

L

57

• Decision-making seems to involve the negotiation of experts in many areas (although a
single agent always makes the final decision). We can't model this negotiation process in
PHOENIX.

Q: Do we need to simulate an engagement to handle either the static or dynamic aspects of
the OP problem?

A: The static aspect requires simulation, or projection, at some level of abstraction. One
cannot place resources on a map without considering, at some level of abstraction and to some
time horizon, how an engagement would proceed. Though this seems difficult, two factors make
it less so:

Telltales. It is sometimes unnecessary to project a plan into the future to see how well it
works. This is because we can often "read the future" from aspects of the present. We call
these aspects telltales. One telltale from the fire domain is a "loop" in the fire; we know
from experience that if crews or bulldozers enter a loop, they will get trapped if the loop
closes. It is unnecessary to project all possible outcomes of crews and bulldozers entering
loops. In fact, it is unnecessary to project at all. The simple recognition of a loop is
enough to warn the planner to stay away. A telltale reduces the collosal combinatorics of
projection—simulation—by replacing a projection problem with a recognition problem.

Telltales are numerous in operational planning. They are evident, for example, when a
planner says "He won't come this way because there are too many rivers to cross." The
rivers, like the loop in the fire, enable the planner to prune alternatives from the space of
possible futures.

Abstraction. One lesson of AI planning research is that complex processes can be decom-
posed into "nearly independent" subprocesses or, alternatively, clustered into nearly-
independent units. So, for example, military forces are not modelled in terms of indi-
viduals, but in terms of clusters of individuals that have particular properties, such as an
artillary battalion. Clearly, it is easier to simulate an engagement at the level of battal-
ions than at the level of individual troops. In general, the higher the level of abstraction,
the easier the simulation, and the more "detail" is lost. Given this fundamental tradeoff,
simulation for planning requires finding the right level of abstraction. A good planning
architecture will permit planning at multiple levels of abstraction, so some aspects of
the plan can be crudely sketched and simulated, while others—presumably more critical
aspects—are dealt with in detail.

Fortunately, the hierarchical organization of military forces gives us some idea about the
appropriate levels of abstraction. However, we find in operational planning the creation
of ad hoc clusters, such as a covering force with an artillery backup, that are treated as
a single object. These objects have components from different levels of abstraction (one
may be a battalion and the other a handful of brigades), and they may have different
characteristics, and serve different purposes. Nevertheless, they may be treated as a single

58

unit for the purposes of planning. All this suggests that while the power of abstraction is
clearly essential, it isn't as clear how components of forces at different levels of abstraction
are created.

The dynamic aspect of the OP problem also requires some simulation or projection. When
allocating reinforcements, advancing or withdrawing forces, and otherwise managing one's re-
sources, one needs some idea of how a plan will fare before attempting it. The problems with
this approach were outlined earlier (Sec. 4). Chief among them is that all planning takes time,
during which one's resources may be depleting rapidly, or during which opportunities may be
lost. We handled this problem four ways in PHOENIX (and in the proposed envelope-based
extension to PHOENIX):

Plan when there is time. In fire-fighting, the planner is frequently waiting for the fire-
fighting objects to move from one place to another, or build a prescribed line, or report
what they see. During this time, the planner considers alternative plans. Consequently,
if a current plan fails, or begins to fail, the planner often has another one ready.

Plan in advance; contingency planning. An extreme form of the previous point is that
plans should be worked out at some level of abstraction, with many contingencies consid-
ered, before an engagement begins. Clearly, the level of abstraction of contingency plans
depends on how many and how unpredictable are the outcomes once the engagement
begins. In the forest-fire problem, we maintain a library of skeleton plans that specify, at
the right level of abstraction, how to deal with different kinds of fires. There's a plan for
containing small fires in light winds, another for containing fires that threaten property,
and so on.

Have dynamic control of the depth and level of abstraction of dynamic replanning.
Since it is clearly impossible to anticipate all contingencies at an acceptable level of ab-
straction, the planner will have to deal with unexpected situations as they arise. This will
require projection which, as we noted above, takes time. However, sometimes unexpected
situations evolve slowly and sometimes very fast; so sometimes the planner can carefully
consider how to respond, and sometimes it has to react immediately. Consequently, the
planner requires dynamic control of how much projection it does. The more time, the
more projection, all other things being equal. The time required for projection in turn
depends on the depth of the projection (the number of moves and countermoves that are
considered) and the level of abstraction at which the projection takes place. The PHOENIX

architecture offers dynamic control of both these parameters.

Use envelopes to minimize interactions between the planner and its agents, and
to project progress. Envelopes, as we said in Section 6, measure the progress of a
planner's agents. They minimize the interaction between the planner and its agents—
and thus the amount of time the planner must spend monitoring and replanning for its
agents—by telling the agents, in effect "Do this, I don't care how, and I don't want to
be bothered unless things are going especially well or especially badly, which I define as

59

follows..." This seems to be the nature of interaction between levels of command in the
military hierarchy, so we expect envelope-based planning to be essential to the dynamic,
engagement phase of the operational planning problem.

The other important contribution of envelopes is that because they measure progress, they
enable the planner to project the progress of its agents. This gives the planner valuable
warning of impending crises.

9 Conclusion

As of this writing, we have implemented envelopes, approximate processing, and replanning
in Phoenix. All these abilities are rudimentary, however, and much more needs to be done. Yet,
Phoenix is clearly an appropriate architecture for operational planning and monitoring. Over
the course of days of simulated time, the Phoenix planner detects threats (forest fires), assesses
its resources, plans appropriately, monitors the execution of the plans (despite message delays
and other kinds of noise), and modifies its plans when the environment so dictates. It does all
this in real time, that is, in a timely way given the rate at which the environment changes. In
PHOENIX we have a laboratory in which to study the operational planning problem and the
applicability of AI technology to it.

i

60

References

[1] Philip E. Agre and David Chapman. Pengi: An implementation of a theory of activity.
In Proceedings of the Sixth National Conference on Artificial Intelligence, pages 268-272,
Seattle, Washington, 1987. American Association for Artificial Intelligence.

[2] James F. Allen. Towards a general theory of action and time. Artificial Intelligence,
23(2):123-154, 1984.

[3] Rodney A. Brooks. A robust layered control system for a mobile robot. A.I. Memo 864,
Massachusetts Institute of Technology, 1985.

[4] Carol A. Broverman and W. Bruce Croft. Reasoning about exceptions during plan exe-
cution. In Proceedings of the Sixth National Conference on Artificial Intelligence, pages
190-195, Seattle, Washington, 1987.

[5] David Chapman and Philip E. Agre. Abstract reasoning as emergent from concrete ac-
tivity. In M. P. Georgeff and A. L. Lansky, editors, Reasoning About Actions and Plans,
Proceedings of the 1986 Workshop at Timberline, Oregon, pages 411-424, 1987.

[6] Paul R. Cohen and David S. Day. The centrality of autonomous agents in theories of action
under uncertainty. Eksl technical report, University of Massachusetts, January 1988. To
appear in the International Journal for Approximate Reasoning.

[7] Paul R. Cohen and Edward Feigenbaum. The Handbook of Artificial Intelligence, Volume
III. William F. Kaufmann, Inc., Los Altos, CA, 1982.

[8] Paul R. Cohen, Glenn Shafer, and Prakash P. Shenoy. Modifiable combining functions. AI
EDAM, l(l):47-85, 1987.

[9] U.S. Army Command and General Staff College. ST 101-9 The Command Estimate. Ft.
Leavenworth, Kansas, 1987.

[10] Jim R. Dacus. Knowledge-based planning in advanced tactical aircraft. In Proceedings of
the DARPA Knowledge-Based Planning Workshop, Austin, Texas, December 1987.

[11] M. Daily, J. Harris, D. Deirsey, K. Olin, D. Payton, K Reiser, J. Rosenblatt, D. Tseng,
and V. Wong. Autonomous cross-country navigation with the ALV. In Proceedings of the
DARPA Knowledge-Based Planning Workshop, Austin, Texas, December 1987.

[12] Thomas Dean. Large-scale temporal data bases for planning in complex domains. In
Proceedings of the Tenth International Joint Conference on Artificial Intelligence, Milan,
Italy, 1987.

[13] Thomas Dean. Planning, execution and control. In Proceedings of the DARPA Knowledge-
Based Planning Workshop, Austin, Texas, December 1987.

61

[14] Edmund H. Durfee. A unified approach to dynamic coordination: Planning actions and
interactions in a distributed problem solving network. Ph.d. dissertation, University of
Massachusetts, Amherst, Massachusetts, September 1987.

[15] R. Fikes, P. Hart, and N. Nilsson. Learning and executing generalized robot plans. Arti-
ficial Intelligence, 3(4):251-288, 1972.

[16] R. James Firby. An investigation into reactive planning in complex domains. In Proceed-
ings of the Sixth National Conference on Artificial Intelligence, pages 202-206, Seattle,
Washington, 1987.

[17] R. James Firby and Steve Hanks. A simulator for mobile robot planning. In Proceedings
of the DARPA Knowledge-Based Planning Workshop, Austin, Texas, December 1987.

[18] Alan Garvey, Craig Cornelius, and Barbara Hayes-Roth. Computational costs versus ben-
efits of control reasoning. In Proceedings of the Sixth National Conference on Artificial
Intelligence, pages 110-115, Seattle, Washington, 1987.

[19] Steve Hanks. Temporal reasoning about uncertain worlds. In Third Workshop on Uncer-
tainty in Artificial Intelligence, pages 114-122. American Association for Artificial InteUi-
gence, July 1987.

[20] B. Hayes-Roth, A. Garvey, M.V. Johnson, and M. Hewett. A layered environment for
reasoning about action. Technical Report KSL 86-38, Computer Science Department,
Stanford University, April 1986.

[21] Barbara Hayes-Roth. Dynamic control planning in adaptive intelligent systems. In Pro-
ceedings of the DARPA Knowledge-Based Planning Workshop, Austin, Texas, December
1987.

[22] James A. Hendler and James C. Sanborn. A model of reaction for planning in dynamic en-
vironments. In Proceedings of the DARPA Knowledge-Based Planning Workshop, Austin,
Texas, December 1987.

[23] Martin Herman and James S. Albus. Real-time hierarchical planning for multiple mo-
bile robots. In Proceedings of the DARPA Knowledge-Based Planning Workshop, Austin,
Texas, December 1987.

124] Richard Korf. Real-time heuristic search: First results. In Proceedings of the Sixth National
Conference on Artificial Intelligence, pages 133-138, Seattle, Washington, 1987.

[25] Victor R. Lesser, Edmund H. Durfee, and Jasmina Pavlin. Approximate processing in
real-time problem solving. AI Magazine, pages 49-61, Spring 1988.

[26] Richard A. Luhrs and Anthony R. Nowicki. Real-time dynamic planning for autonomous
vehicles. In Proceedings of the DARPA Knowledge-Based Planning Workshop, Austin,
Texas, December 1987.

62

[27] Drew McDermott. A temporal logic for reasoning about processes and plans. Cognitive
Science, 6:101-155, 1982.

[28] Drew V. McDermott. DARPA-sponsered planning research: Report and prospectus.
YALE/CSD/RR 522, Yale University. Department of Computer Science, March 1987.

[29] A. Newell and H.A. Simon. Human Problem Solving. Prentice-Hall, Inc., Englewood Cliffs,
NJ, 1972.

[30] HQ Department of the Army. FM 101-5 Staff Organization and Operations. Department
of the Army, 1984.

[31] William J. Pardee and Barbara Hayes-Roth. Intelligent real time control of material pro-
cessing. Technical report, Rockwell International, Science Center, Palo Alto Laboratory,
February 1987.

[32] E. D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial Intelligence,
5(2):115-135, September 1974.

[33] E.D. Sacerdoti. A Structure for Plans and Behavior. American Elsevier: New York, NY,
1975.

[34] G. J. Sussman. A Computer Model of Skill Acquisition. American Elsevier, New York,
NY, 1975.

[35] William Swartout. Summary report on DARPA Santa Cruz workshop on planning. In Pro-
ceedings of the DARPA Knowledge-Based Planning Workshop, Austin, Texas, December
1987.

[36] A. Täte. Generating project networks. In Proceedings of the Fifth International Joint
Conference on Artificial Intelligence, pages 888-893, Tiblisi, Georgia, USSR, 1977.

[37] Austin Täte. INTERPLAN: A plan generation system that can deal with interactions
between goals. Machine Intelligence Research Unit Memo MIP-1-109, University of Edin-
burgh, Edinburgh, December 1974.

[38] Stephen Vere. Planning in time: Windows and durations for activites and goals. Technical
report, Jet Propulsion Laboratory, Pasadena, California, 1981.

[39] Richard Waldinger. Achieving several goals simultaneously. In E. W. Elcock and D. Michie,
editors, Machine Intelligence, Volume 8. Halstead/Wiley, New York, NY, 1977.

[40] D. H. D. Warren. WARPLAN: A systen for generating plans. Department of Computa-
tional Logic Memo 76, University of Edinburgh, 1974.

[41] Michael P. Wellman and David E. Heckerman. The role of calculi in uncertain reasoning.
In Third Workshop on Uncertainty in Artificial Intelligence, pages 321-331. American
Association for Artificial Intelligence, July 1987.

[42] David E. Wilkins. Recovering from execution errors in SIPE. Technical report, 1985.

